Sharp estimates of Hardy constants for domains with special boundary properties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 69-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the behavior of Hardy constants in domains whose boundaries have at least one regular boundary point.
Keywords: Hardy inequalities, distance function, Hardy constants.
@article{IVM_2014_2_a8,
     author = {F. G. Avkhadiev and I. K. Shafigullin},
     title = {Sharp estimates of {Hardy} constants for domains with special boundary properties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--73},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_2_a8/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
AU  - I. K. Shafigullin
TI  - Sharp estimates of Hardy constants for domains with special boundary properties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 69
EP  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_2_a8/
LA  - ru
ID  - IVM_2014_2_a8
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%A I. K. Shafigullin
%T Sharp estimates of Hardy constants for domains with special boundary properties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 69-73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_2_a8/
%G ru
%F IVM_2014_2_a8
F. G. Avkhadiev; I. K. Shafigullin. Sharp estimates of Hardy constants for domains with special boundary properties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 69-73. http://geodesic.mathdoc.fr/item/IVM_2014_2_a8/

[1] Sobolev S. L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989 | MR

[2] Maz'ya V. G., Sobolev spaces, Springer, Berlin–New York, 1985 | MR

[3] Matskewich T., Sobolevskii P. E., “The best possible constant in a generalized Hardy's inequality for convex domains in $\mathbb R^n$”, Nonlinear Anal., 28 (1997), 1601–1610 | DOI | MR | Zbl

[4] Marcus M., Mitzel V. J., Pinchover Y., “On the best constant for Hardy's inequality in $\mathbb R^n$”, Trans. Amer. Math. Soc., 350 (1998), 3237–3250 | DOI | MR

[5] Avkhadiev F. G., “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[6] Avkhadiev F. G., “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Tr. matem. inst. im. V. A. Steklova, 255, 2006, 8–18 | MR

[7] Davies E. B., “The Hardy constant”, Quart. J. Math. Oxford (2), 46:4 (1995), 417–431 | DOI | MR | Zbl

[8] Miklyukov V. M., Vuorinen M., “Hardy's inequality for $W_0^{1,p}$-functions on Riemannian manifolds”, Proc. Amer. Math. Soc., 127:9 (1999), 2245–2254 | DOI | MR

[9] Avkhadiev F. G., Wirths K.-J., “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech. (ZAMM), 87:8–9 (2007), 632–642 | DOI | MR | Zbl

[10] Avkhadiev F. G., Wirths K.-J., “Weighted Hardy inequalities with sharp constants”, Lobachevskii J. Math., 31:1 (2010), 1–7 | DOI | MR | Zbl

[11] Avkhadiev F. G., Wirths K.-J., “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 723–736 | MR | Zbl

[12] Avkhadiev F. G., Wirths K.-J., “On the best constants for the Brezis–Marcus inequalities in balls”, J. Math. Anal. and Appl., 396:2 (2012), 472–480 | DOI | MR

[13] Avkhadiev F. G., “Semeistva oblastei, obladayuschikh maksimalnoi konstantoi Khardi”, Izv. vuzov. Matem., 2013, no. 9, 59–63