Homogeneous mappings of Abelian groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 61-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study Abelian groups whose homogeneous map to other Abelian groups represents a homomorphism. We consider these groups as modules over the ring of integers and over their endomorphism ring. We also study related issues.
Keywords: Abelian group, homogeneous map, near-ring.
@article{IVM_2014_2_a7,
     author = {D. S. Chistyakov},
     title = {Homogeneous mappings of {Abelian} groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--68},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_2_a7/}
}
TY  - JOUR
AU  - D. S. Chistyakov
TI  - Homogeneous mappings of Abelian groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 61
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_2_a7/
LA  - ru
ID  - IVM_2014_2_a7
ER  - 
%0 Journal Article
%A D. S. Chistyakov
%T Homogeneous mappings of Abelian groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 61-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_2_a7/
%G ru
%F IVM_2014_2_a7
D. S. Chistyakov. Homogeneous mappings of Abelian groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 61-68. http://geodesic.mathdoc.fr/item/IVM_2014_2_a7/

[1] Fuchs P., Maxson C. J., Pilz G., “On rings for which homogeneous maps are linear”, Proc. Amer. Math. Soc., 112:1 (1991), 1–7 | DOI | MR | Zbl

[2] Hausen J., Johnson J. A., “Centralizer near-rings that are rings”, J. Austr. Math. Soc., 59 (1995), 173–183 | DOI | MR | Zbl

[3] Chistyakov D. S., Lyubimtsev O. V., “Abelevy gruppy kak endomorfnye moduli nad svoim koltsom endomorfizmov”, Fundament. i prikl. matem., 13:1 (2007), 229–233 | MR | Zbl

[4] Chistyakov D. S., “Endomorfnye nerazlozhimye abelevy gruppy bez krucheniya ranga 3”, Vestn. Tomsk. un-ta. Ser. Matem. i mekhan., 13:1 (2011), 61–66

[5] van der Merwe A. B., “Unique addition modules”, Commun. Algebra, 27:9 (1999), 4103–4115 | DOI | MR | Zbl

[6] Lyubimtsev O. V., Chistyakov D. S., “Abelevy gruppy kak UA-moduli nad koltsom $\mathbb Z$”, Matem. zametki, 87:3 (2010), 412–416 | DOI | MR | Zbl

[7] Chistyakov D. S., “Abelevy gruppy kak $UA$-moduli nad svoim koltsom endomorfizmov”, Matem. zametki, 91:6 (2012), 934–941 | DOI

[8] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[9] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial press, M., 2006

[10] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[11] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977

[12] Beaumont R., Pierce R., “Torsion-free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl

[13] Fomin A. A., Wickless W., “Quotient divisible Abelian groups”, Proc. Amer. Math. Soc., 126 (1998), 45–52 | DOI | MR | Zbl

[14] Davydova O. I., “Faktorno delimye gruppy ranga 1”, Fundament. i prikl. matem., 13:3 (2007), 25–33 | MR | Zbl

[15] Tuganbaev A. A., “Distributivnye koltsa i endodistributivnye moduli”, Ukr. matem. zhurn., 38 (1986), 63–67 | MR | Zbl

[16] Tarakanov E. V., “Endodistributivnye moduli nad dedekindovymi koltsami”, Abelevy gruppy i moduli, 1990, 83–107