Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_2_a6, author = {E. A. Utkina}, title = {A characteristic boundary problem for a~third-order equation with a~psedoparabolic operator where the desired function has shifted arguments}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {54--60}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_2_a6/} }
TY - JOUR AU - E. A. Utkina TI - A characteristic boundary problem for a~third-order equation with a~psedoparabolic operator where the desired function has shifted arguments JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 54 EP - 60 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_2_a6/ LA - ru ID - IVM_2014_2_a6 ER -
%0 Journal Article %A E. A. Utkina %T A characteristic boundary problem for a~third-order equation with a~psedoparabolic operator where the desired function has shifted arguments %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2014 %P 54-60 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2014_2_a6/ %G ru %F IVM_2014_2_a6
E. A. Utkina. A characteristic boundary problem for a~third-order equation with a~psedoparabolic operator where the desired function has shifted arguments. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 54-60. http://geodesic.mathdoc.fr/item/IVM_2014_2_a6/
[1] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR | Zbl
[2] Myshkis A. D., “O nekotorykh problemakh teorii differentsialnykh uravnenii s otklonyayuschimsya argumentom”, UMN, 32:2 (1977), 173–202 | MR | Zbl
[3] Azbelev N. V., Rakhmatullina L. F., “Funktsionalno-differentsialnye uravneniya”, Differents. uravneniya, 14:5 (1978), 771–797 | MR | Zbl
[4] Kheili Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR
[5] Mokeichev V. S., Differentsialnye uravneniya s otklonyayuschimsya argumentom, Izd-vo Kazansk. un-ta, Kazan, 1985
[6] Zarubin A. N., Uravneniya smeshannogo tipa s zapazdyvayuschim argumentom, Uchebnoe posobie, OGU, Orel, 1997
[7] Zhegalov V. I., “Giperbolicheskoe uravnenie so smescheniem argumentov iskomoi funktsii”, Uravneniya smeshannogo tipa i rodstvennye problemy analiza i informatiki, Materialy vtorogo Mezhdunarodnogo Rossiisko-Uzbekskogo simpoziuma, Izd-vo KBNTs RAN, Nalchik, 2012, 107–109
[8] Andreev A. A., “O korrektnosti nachalnykh zadach dlya nekotorykh uravnenii v chastnykh proizvodnykh s otklonyayuschimsya argumentom”, Uravneniya neklassicheskogo tipa, Cb., IM SOAN SSSR, Novosibirsk, 1986, 10–14
[9] Andreev A. A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 40:5 (2004), 1126–1128 | Zbl
[10] Andreev A. A., Saushkin I. N., “Ob analoge zadachi Trikomi dlya odnogo modelnogo uravneniya s involyutivnym otkloneniem v beskonechnoi oblasti”, Vestn. Samarsk. tekhn. un-ta. Ser. Fiz.-matem. nauki, 2005, no. 34, 10–16
[11] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shkola, M., 1995, 301 pp. | Zbl
[12] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matem., 1999, no. 10, 73–76 | MR | Zbl
[13] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp. | MR