$M_p$-groups not containing groups of quaternions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 17-29
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper continues the study of class of $M_p$-groups introduced by V. P. Shunkov. We obtain a criterion of non-simplicity of an infinite group, which contains the $M_p$-group and contains no group of quaternions. We also obtain a criterion that an infinite group is the $M_p $-group.
Mots-clés :
group, Frobenius group.
Keywords: finiteness condition
Keywords: finiteness condition
@article{IVM_2014_2_a2,
author = {S. N. Kozulin and V. I. Senashov and V. P. Shunkov},
title = {$M_p$-groups not containing groups of quaternions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {17--29},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_2_a2/}
}
TY - JOUR AU - S. N. Kozulin AU - V. I. Senashov AU - V. P. Shunkov TI - $M_p$-groups not containing groups of quaternions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 17 EP - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_2_a2/ LA - ru ID - IVM_2014_2_a2 ER -
S. N. Kozulin; V. I. Senashov; V. P. Shunkov. $M_p$-groups not containing groups of quaternions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 17-29. http://geodesic.mathdoc.fr/item/IVM_2014_2_a2/