$M_p$-groups not containing groups of quaternions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 17-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper continues the study of class of $M_p$-groups introduced by V. P. Shunkov. We obtain a criterion of non-simplicity of an infinite group, which contains the $M_p$-group and contains no group of quaternions. We also obtain a criterion that an infinite group is the $M_p $-group.
Mots-clés : group, Frobenius group.
Keywords: finiteness condition
@article{IVM_2014_2_a2,
     author = {S. N. Kozulin and V. I. Senashov and V. P. Shunkov},
     title = {$M_p$-groups not containing groups of quaternions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {17--29},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_2_a2/}
}
TY  - JOUR
AU  - S. N. Kozulin
AU  - V. I. Senashov
AU  - V. P. Shunkov
TI  - $M_p$-groups not containing groups of quaternions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 17
EP  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_2_a2/
LA  - ru
ID  - IVM_2014_2_a2
ER  - 
%0 Journal Article
%A S. N. Kozulin
%A V. I. Senashov
%A V. P. Shunkov
%T $M_p$-groups not containing groups of quaternions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 17-29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_2_a2/
%G ru
%F IVM_2014_2_a2
S. N. Kozulin; V. I. Senashov; V. P. Shunkov. $M_p$-groups not containing groups of quaternions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 17-29. http://geodesic.mathdoc.fr/item/IVM_2014_2_a2/

[1] Shunkov V. P., $M_p$-gruppy, Nauka, M., 1990 | MR | Zbl

[2] Shunkov V. P., “$M_p$-gruppy”, Algebra i logika, 23:4 (1984), 445–475 | MR | Zbl

[3] Gomer V. O., O gruppakh s elementami konechnykh rangov, Diss. $\dots$ kand. fiz.-matem. nauk, Krasnoyarskii gosudarstvennyi universitet, Krasnoyarsk, 1992

[4] Kozulin S. N., Senashov V. I., Shunkov V. P., “Gruppy s ruchkami poryadka, otlichnogo ot trekh”, Ukr. matem. zhurn., 56:8 (2004), 1030–1042 | MR | Zbl

[5] Adyan N. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[6] Merzlyakov Yu. I., Ratsionalnye gruppy, Nauka, M., 1980 | MR | Zbl

[7] Podufalov N. D., “Konechnye prostye gruppy bez elementov poryadka 6, 10”, Algebra i logika, 14:1 (1975), 79–85 | MR | Zbl

[8] Kholl M., Teoriya grupp, In. lit., M., 1962

[9] Shunkov V. P., O vlozhenii primarnykh elementov v gruppe, VO “Nauka”, Novosibirsk, 1992 | MR | Zbl

[10] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[11] Izmailov A. N., Shunkov V. P., “Dva priznaka neprostoty grupp s beskonechno izolirovannoi podgruppoi”, Algebra i logika, 21:6 (1982), 647–669 | MR

[12] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[13] K teorii konechnykh grupp, Sbornik perevodov inostrannykh statei, Mir, M., 1979 | MR

[14] Sozutov A. I., Shunkov V. P., “O beskonechnykh gruppakh, nasyschennykh frobeniusovymi podgruppami”, Algebra i logika, 16:6 (1977), 711–735 | MR | Zbl