Laplace operator with $\delta$-like potentials
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 9-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Laplace operator in a punctured domain in a Hilbert space. We obtain an analog of the Green formula and a class of self-adjoint extensions of the Laplacian. We also investigate a certain class of well-posed problems.
Keywords: Laplace operator, punctured domain, analog of the Green formula, self-adjoint extension, well-posed problem.
@article{IVM_2014_2_a1,
     author = {B. E. Kanguzhin and D. B. Nurakhmetov and N. E. Tokmagambetov},
     title = {Laplace operator with $\delta$-like potentials},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {9--16},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_2_a1/}
}
TY  - JOUR
AU  - B. E. Kanguzhin
AU  - D. B. Nurakhmetov
AU  - N. E. Tokmagambetov
TI  - Laplace operator with $\delta$-like potentials
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 9
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_2_a1/
LA  - ru
ID  - IVM_2014_2_a1
ER  - 
%0 Journal Article
%A B. E. Kanguzhin
%A D. B. Nurakhmetov
%A N. E. Tokmagambetov
%T Laplace operator with $\delta$-like potentials
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 9-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_2_a1/
%G ru
%F IVM_2014_2_a1
B. E. Kanguzhin; D. B. Nurakhmetov; N. E. Tokmagambetov. Laplace operator with $\delta$-like potentials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 9-16. http://geodesic.mathdoc.fr/item/IVM_2014_2_a1/

[1] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1969

[2] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[3] Kostenko A. S., Malamud M. M., “1-D Schrödinger operators with local point interactions on a discrete set”, J. Different. Equat., 249 (2010), 253–304 | DOI | MR | Zbl

[4] Golovatyi Yu. D., Manko S. S., “Tochnye modeli dlya operatorov Shredingera s $\delta'$-podobnymi potentsialami”, Ukr. matem. vestn., 6:2 (2009), 173–207 | MR

[5] Goloschapova N. I., Zastavnyi V. P., Malamud M. M., “Polozhitelno opredelennye funktsii i spektralnye svoistva operatora Shredingera s tochechnymi vzaimodeistviyami”, Matem. zametki, 90:1 (2011), 151–156 | DOI | MR

[6] Pavlov B. S., “Teoriya rasshirenii i yavno reshaemye modeli”, UMN, 42:6 (1987), 99–131 | MR | Zbl

[7] Mineev V. S., “Fizika samosopryazhennykh rasshirenii: odnomernaya zadacha rasseyaniya dlya kulonovskogo potentsiala”, Teor. i matem. fizika, 140:2 (2004), 310–328 | DOI | MR | Zbl

[8] Shondin Yu. G., “Vozmuscheniya na tonkikh mnozhestvakh vysokoi korazmernosti ellipticheskikh operatorov i teoriya rasshirenii v prostranstve s indefinitnoi metrikoi”, Zap. nauchn. semin. POMI, 222, 1995, 246–292 | MR | Zbl

[9] Zubok D. A., Popov I. Yu., “Dva fizicheskikh prilozheniya operatora Laplasa, vozmuschennogo na mnozhestve nulevoi mery”, Teor. i matem. fizika, 119:2 (1999), 295–307 | DOI | MR | Zbl

[10] Kanguzhin B. E., Aniyarov A. A., “Korrektnye zadachi dlya operatora Laplasa v prokolotoi oblasti”, Matem. zametki, 89:6 (2011), 856–867 | DOI | MR | Zbl

[11] Bitsadze A. V., Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | MR

[12] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[13] Otelbaev M. O., Shynybekov A. N., “O korrektnykh zadachakh tipa Bitsadze–Samarskogo”, DAN SSSR, 265:4 (1982), 815–819 | MR | Zbl

[14] Otelbaev M. O., Kokebaev B. K., Shynybekov A. N., “K voprosam rasshireniya i suzheniya operatorov”, DAN SSSR, 271:6 (1983), 1307–1311 | MR

[15] Kanguzhin B. E., Nurakhmetov D. B., Tokmagambetov N. E., “Approksimativnye svoistva sistemy kornevykh funktsii, porozhdaemye korrektno razreshimymi kraevymi zadachami dlya obyknovennykh differentsialnykh uravnenii vysshikh poryadkov”, Ufimskii matem. zhurnal, 3:3 (2011), 80–92 | Zbl

[16] Berikkhanova G. E., Kanguzhin B. E., “Rezolventy konechnomernykh vozmuschennykh korrektnykh zadach dlya bigarmonicheskogo operatora”, Ufimskii matem. zhurnal, 2:1 (2010), 17–34