Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_2_a0, author = {V. E. Berezovskii and J. Mike\v{s}}, title = {Canonical almost geodesic mappings of the first type of manifolds with affine connection}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--8}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_2_a0/} }
TY - JOUR AU - V. E. Berezovskii AU - J. Mikeš TI - Canonical almost geodesic mappings of the first type of manifolds with affine connection JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 3 EP - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_2_a0/ LA - ru ID - IVM_2014_2_a0 ER -
V. E. Berezovskii; J. Mikeš. Canonical almost geodesic mappings of the first type of manifolds with affine connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_2014_2_a0/
[1] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti i rimanovykh prostranstv”, DAN SSSR, 151:4 (1963), 781–782 | Zbl
[2] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR | Zbl
[3] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti i rimanovykh prostranstv”, Itogi nauki i tekhn. Probl. geometrii, 13, VINITI, M., 1982, 3–26 | MR | Zbl
[4] Berezovski V., Mikeš J., “On a classification of almost geodesic mappings of affine connection spaces”, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math., 35 (1996), 21–24 | MR | Zbl
[5] Berezovski V., Mikeš J., Vanžurová A., “Canonical almost geodesic mappings of type $\pi_1$ onto pseudo-Riemannian manifolds”, Diff. Geom. and Appl., Proc. Conf. (Olomouc, August 27–31, 2007), World Sci. Publ. Comp., 2008, 65–75 | MR | Zbl
[6] Berezovskii V. E., Mikesh I., “Pochti geodezicheskie otobrazheniya tipa $\pi_1$ na obobschenno Richchi-simmetricheskie prostranstva”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-matem. nauki, 151, no. 4, 2009, 9–14
[7] Berezovski V., Mikeš J., Vanžurová A., “Almost geodesic mappings onto generalized Ricci-symmetric manifolds”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 26:2 (2010), 221–230 | MR
[8] Aminova A. V., “Gruppy pochti proektivnykh dvizhenii prostranstv affinnoi svyaznosti”, Izv. vuzov. Matem., 1979, no. 4, 71–75 | MR | Zbl
[9] Sobchuk V. S., “Vnutrennie pochti geodezicheskie otobrazheniya”, Izv. vuzov. Matem., 1989, no. 5, 62–64 | MR | Zbl
[10] Mikesh I., Sinyukov N. S., “O kvaziplanarnykh otobrazheniyakh prostranstv affinnoi svyaznosti”, Izv. vuzov. Matem., 1983, no. 1, 55–61 | MR | Zbl
[11] Mikeš J., “$F$-planar mappings and transformations”, Diff. Geom. and Appl. Proc. (August 24–30, 1986, Brno, Czechoslovakia), 245–254 | MR | Zbl
[12] Mikesh I., “O spetsialnykh $F$-planarnykh otobrazheniyakh prostranstv affinnoi svyaznosti”, Vestn. Mosk. un-ta, 1994, no. 3, 18–24 | MR
[13] Mikeš J., “Holomorphically projective mappings and their generalizations”, J. Math. Sci. (New York), 89:3 (1998), 1334–1353 | DOI | MR | Zbl
[14] Hinterleitner I., Mikeš J., “On $F$-planar mappings of spaces with affine connections”, Note Mat., 27:1 (2007), 111–118 | MR | Zbl
[15] Yablonskaya N. V., “O spetsialnykh gruppakh pochti geodezicheskikh preobrazovanii prostranstv affinnoi svyaznosti”, Izv. vuzov. Matem., 1986, no. 1, 78–80 | MR | Zbl
[16] Petrov A. Z., “Modelirovanie fizicheskikh polei”, Gravitatsiya i teoriya otnositelnosti (Izd-vo Kazansk. un-ta), 1968, no. 4–5, 7–21