Canonical almost geodesic mappings of the first type of manifolds with affine connection
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study special cases of canonical almost geodesic mappings of the first type of manifolds with affine connection. We reduce basic equations of these mappings to a closed Cauchy-type system with respect to covariant derivatives. We obtain estimates for essential parameters that affect the general solution. We give examples of such mappings of some flat space onto another one. Such mappings transform straight lines in one space into parabolas in another one. The mentioned almost geodesic mappings of the first type differ from almost geodesic mappings of the second and third types.
Keywords: canonical almost geodesic mapping of the first type, manifold with affine connection.
@article{IVM_2014_2_a0,
     author = {V. E. Berezovskii and J. Mike\v{s}},
     title = {Canonical almost geodesic mappings of the first type of manifolds with affine connection},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_2_a0/}
}
TY  - JOUR
AU  - V. E. Berezovskii
AU  - J. Mikeš
TI  - Canonical almost geodesic mappings of the first type of manifolds with affine connection
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_2_a0/
LA  - ru
ID  - IVM_2014_2_a0
ER  - 
%0 Journal Article
%A V. E. Berezovskii
%A J. Mikeš
%T Canonical almost geodesic mappings of the first type of manifolds with affine connection
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_2_a0/
%G ru
%F IVM_2014_2_a0
V. E. Berezovskii; J. Mikeš. Canonical almost geodesic mappings of the first type of manifolds with affine connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2014), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_2014_2_a0/

[1] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti i rimanovykh prostranstv”, DAN SSSR, 151:4 (1963), 781–782 | Zbl

[2] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR | Zbl

[3] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti i rimanovykh prostranstv”, Itogi nauki i tekhn. Probl. geometrii, 13, VINITI, M., 1982, 3–26 | MR | Zbl

[4] Berezovski V., Mikeš J., “On a classification of almost geodesic mappings of affine connection spaces”, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math., 35 (1996), 21–24 | MR | Zbl

[5] Berezovski V., Mikeš J., Vanžurová A., “Canonical almost geodesic mappings of type $\pi_1$ onto pseudo-Riemannian manifolds”, Diff. Geom. and Appl., Proc. Conf. (Olomouc, August 27–31, 2007), World Sci. Publ. Comp., 2008, 65–75 | MR | Zbl

[6] Berezovskii V. E., Mikesh I., “Pochti geodezicheskie otobrazheniya tipa $\pi_1$ na obobschenno Richchi-simmetricheskie prostranstva”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-matem. nauki, 151, no. 4, 2009, 9–14

[7] Berezovski V., Mikeš J., Vanžurová A., “Almost geodesic mappings onto generalized Ricci-symmetric manifolds”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 26:2 (2010), 221–230 | MR

[8] Aminova A. V., “Gruppy pochti proektivnykh dvizhenii prostranstv affinnoi svyaznosti”, Izv. vuzov. Matem., 1979, no. 4, 71–75 | MR | Zbl

[9] Sobchuk V. S., “Vnutrennie pochti geodezicheskie otobrazheniya”, Izv. vuzov. Matem., 1989, no. 5, 62–64 | MR | Zbl

[10] Mikesh I., Sinyukov N. S., “O kvaziplanarnykh otobrazheniyakh prostranstv affinnoi svyaznosti”, Izv. vuzov. Matem., 1983, no. 1, 55–61 | MR | Zbl

[11] Mikeš J., “$F$-planar mappings and transformations”, Diff. Geom. and Appl. Proc. (August 24–30, 1986, Brno, Czechoslovakia), 245–254 | MR | Zbl

[12] Mikesh I., “O spetsialnykh $F$-planarnykh otobrazheniyakh prostranstv affinnoi svyaznosti”, Vestn. Mosk. un-ta, 1994, no. 3, 18–24 | MR

[13] Mikeš J., “Holomorphically projective mappings and their generalizations”, J. Math. Sci. (New York), 89:3 (1998), 1334–1353 | DOI | MR | Zbl

[14] Hinterleitner I., Mikeš J., “On $F$-planar mappings of spaces with affine connections”, Note Mat., 27:1 (2007), 111–118 | MR | Zbl

[15] Yablonskaya N. V., “O spetsialnykh gruppakh pochti geodezicheskikh preobrazovanii prostranstv affinnoi svyaznosti”, Izv. vuzov. Matem., 1986, no. 1, 78–80 | MR | Zbl

[16] Petrov A. Z., “Modelirovanie fizicheskikh polei”, Gravitatsiya i teoriya otnositelnosti (Izd-vo Kazansk. un-ta), 1968, no. 4–5, 7–21