The finiteness of the discrete spectrum of a~model operator associated with a~system of three particles on a~lattice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 61-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model operator $H$ associated with a system of three particles on a lattice interacting via nonlocal pair potentials. Under some natural conditions on the parameters specifying this model operator $H$, we prove the finiteness of its discrete spectrum.
Keywords: discrete spectrum, nonlocal potential, continuity in the uniform operator topology, Hilbert–Schmidt class, Weinberg equation.
@article{IVM_2014_1_a5,
     author = {T. Kh. Rasulov and R. T. Mukhitdinov},
     title = {The finiteness of the discrete spectrum of a~model operator associated with a~system of three particles on a~lattice},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--70},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a5/}
}
TY  - JOUR
AU  - T. Kh. Rasulov
AU  - R. T. Mukhitdinov
TI  - The finiteness of the discrete spectrum of a~model operator associated with a~system of three particles on a~lattice
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 61
EP  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_1_a5/
LA  - ru
ID  - IVM_2014_1_a5
ER  - 
%0 Journal Article
%A T. Kh. Rasulov
%A R. T. Mukhitdinov
%T The finiteness of the discrete spectrum of a~model operator associated with a~system of three particles on a~lattice
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 61-70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_1_a5/
%G ru
%F IVM_2014_1_a5
T. Kh. Rasulov; R. T. Mukhitdinov. The finiteness of the discrete spectrum of a~model operator associated with a~system of three particles on a~lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 61-70. http://geodesic.mathdoc.fr/item/IVM_2014_1_a5/

[1] Yafaev D. R., “O konechnosti diskpetnogo spektpa tpekhchastichnogo opepatopa Shpedingepa”, Teor. i matem. fizika, 25:2 (1975), 185–195 | MR | Zbl

[2] Zhislin G. M., “O konechnosti diskretnogo spektra operatorov energii kvantovykh sistem mnogikh chastits”, DAN SSSR, 207:1 (1972), 25–28 | MR | Zbl

[3] Abdullaev Zh. I., Lakaev S. N., “Konechnost diskretnogo spektra trekhchastichnogo operatora Shredingera na reshetke”, Teor. i matem. fizika, 111:1 (1997), 94–108 | DOI | MR | Zbl

[4] Lakaev S. N., Muminov M. E., “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shredingera na reshetke”, Teor. i matem. fizika, 135:3 (2003), 478–503 | DOI | MR | Zbl

[5] Kheine V., Koen M., Ueir D., Teoriya psevdopotentsiala, Mir, M., 1973

[6] Albeverio S., Lakaev S. N., Djumanova R. Kh., “The essential and discrete spectrum of a model operator associated to a system of three identical quantum particles”, Rep. Math. Phys., 63:3 (2009), 359–380 | DOI | MR | Zbl

[7] Albeverio S., Lakaev S. N., Muminov Z. I., “On the number of eigenvalues of a model operator associated to a system of three-particles on a lattices”, Russ. J. Math. Phys., 14:4 (2007), 377–387 | DOI | MR | Zbl

[8] Rasulov T. Kh., “Asimptotika diskretnogo spektra odnogo modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Teor. i matem. fizika, 163:1 (2010), 34–44 | DOI | Zbl

[9] Hall R. L., “Exact solutions for semi-relativistic problems with non-local potentials”, J. Phys. A: Math. Gen., 39:4 (2006), 903–912 | DOI | MR | Zbl

[10] Chadan K., Kobayashi R., “The absence of positive energy bound states for a class of nonlocal potentials”, J. Phys. A: Math. Gen., 38:5 (2005), 1133–1145 | DOI | MR | Zbl

[11] Zorich V. A., Matematicheskii analiz, Ch. 2, Nauka, M., 1984 | MR | Zbl