The finiteness of the discrete spectrum of a~model operator associated with a~system of three particles on a~lattice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 61-70
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a model operator $H$ associated with a system of three particles on a lattice interacting via nonlocal pair potentials. Under some natural conditions on the parameters specifying this model operator $H$, we prove the finiteness of its discrete spectrum.
Keywords:
discrete spectrum, nonlocal potential, continuity in the uniform operator topology, Hilbert–Schmidt class, Weinberg equation.
@article{IVM_2014_1_a5,
author = {T. Kh. Rasulov and R. T. Mukhitdinov},
title = {The finiteness of the discrete spectrum of a~model operator associated with a~system of three particles on a~lattice},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {61--70},
publisher = {mathdoc},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a5/}
}
TY - JOUR AU - T. Kh. Rasulov AU - R. T. Mukhitdinov TI - The finiteness of the discrete spectrum of a~model operator associated with a~system of three particles on a~lattice JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 61 EP - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_1_a5/ LA - ru ID - IVM_2014_1_a5 ER -
%0 Journal Article %A T. Kh. Rasulov %A R. T. Mukhitdinov %T The finiteness of the discrete spectrum of a~model operator associated with a~system of three particles on a~lattice %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2014 %P 61-70 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2014_1_a5/ %G ru %F IVM_2014_1_a5
T. Kh. Rasulov; R. T. Mukhitdinov. The finiteness of the discrete spectrum of a~model operator associated with a~system of three particles on a~lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 61-70. http://geodesic.mathdoc.fr/item/IVM_2014_1_a5/