Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_1_a4, author = {A. V. Neklyudov}, title = {On the absence of global solutions of the {Gauss} equation and solutions in external areas}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {55--60}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a4/} }
TY - JOUR AU - A. V. Neklyudov TI - On the absence of global solutions of the Gauss equation and solutions in external areas JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 55 EP - 60 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_1_a4/ LA - ru ID - IVM_2014_1_a4 ER -
A. V. Neklyudov. On the absence of global solutions of the Gauss equation and solutions in external areas. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 55-60. http://geodesic.mathdoc.fr/item/IVM_2014_1_a4/
[1] Vekua I. N., “O nekotorykh svoistvakh reshenii uravneniya Gaussa”, Tr. matem. in-ta im. V. A. Steklova, 64, 1961, 5–8 | MR | Zbl
[2] Oleinik O. A., “Ob uravnenii $\Delta u+k(x)e^u=0$”, UMN, 33:2 (1978), 203–204 | MR | Zbl
[3] Kametaka I., Oleinik O. A., “Ob asimptoticheskikh svoistvakh i neobkhodimykh usloviyakh suschestvovaniya reshenii nelineinykh ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 107(149):4 (1978), 572–600 | MR | Zbl
[4] Flavin J. N., Knops R. J., Payne L. E., “Asymptotic behavior of solutions to semi-linear elliptic equations on the half-cylinder”, Z. Angew. Math. Phys., 43:3 (1992), 405–421 | DOI | MR | Zbl
[5] Oleinik O. A., Some asymptotic problems of the theory of partial differential equations, Lezioni Lincee, Cambridge University Press, 1996 | MR
[6] Nasrullaev A. I., “Ob asimptotike reshenii zadachi Neimana dlya uravneniya $\Delta u-e^u=0$ v polubeskonechnom tsilindre”, UMN, 50:3 (1995), 161–162 | MR | Zbl
[7] Neklyudov A. V., “Povedenie reshenii polulineinogo ellipticheskogo uravneniya vtorogo poryadka vida $Lu=e^u$ v beskonechnom tsilindre”, Matem. zametki, 85:3 (2009), 408–420 | DOI | MR | Zbl