Finding and analysis of estimation of the number of iterations in integer programming algorithms using the regular partitioning method
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 41-54

Voir la notice de l'article provenant de la source Math-Net.Ru

We review the results of studying integer linear programming algorithms which exploit properties of problem relaxation sets. The main attention is paid to the estimation of the number of iterations of these algorithms by means of the regular partitions method and other approaches. We present such estimates for some cutting plane, branch and bound (Land and Doig scheme), and $L$-class enumeration algorithms and consider questions of their stability. We establish the upper bounds for the average number of iterations of the mentioned algorithms as applied to the knapsack problem and the set packing one.
Keywords: discrete optimization, integer programming, regular partitions method, estimates of the number of iterations, cuts, $L$-class enumeration, branch and bound method, estimates on average, stability of algorithms.
@article{IVM_2014_1_a3,
     author = {A. A. Kolokolov and L. A. Zaozerskaya},
     title = {Finding and analysis of estimation of the number of iterations in integer programming algorithms using the regular partitioning method},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--54},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_1_a3/}
}
TY  - JOUR
AU  - A. A. Kolokolov
AU  - L. A. Zaozerskaya
TI  - Finding and analysis of estimation of the number of iterations in integer programming algorithms using the regular partitioning method
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 41
EP  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_1_a3/
LA  - ru
ID  - IVM_2014_1_a3
ER  - 
%0 Journal Article
%A A. A. Kolokolov
%A L. A. Zaozerskaya
%T Finding and analysis of estimation of the number of iterations in integer programming algorithms using the regular partitioning method
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 41-54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_1_a3/
%G ru
%F IVM_2014_1_a3
A. A. Kolokolov; L. A. Zaozerskaya. Finding and analysis of estimation of the number of iterations in integer programming algorithms using the regular partitioning method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2014), pp. 41-54. http://geodesic.mathdoc.fr/item/IVM_2014_1_a3/