On the three-web associated to the core of a~left Bol three-web
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 83-88

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_\ell$ be a left Bol three-web given on $2r$-dimensional smooth manifold, let $CB_\ell$ be the left Bol three-web, associated to the core of $3$-web $B_\ell$, let $CCB_\ell$ be the left Bol three-web, associated to the core of $3$-web $CB_\ell$. We prove that the three-webs $CB_\ell$ and $CCB_\ell$ are equivalent.
Keywords: Bol three-web, core of Bol three-web.
@article{IVM_2014_12_a7,
     author = {G. A. Tolstikhina and A. M. Shelekhov},
     title = {On the three-web associated to the core of a~left {Bol} three-web},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--88},
     publisher = {mathdoc},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_12_a7/}
}
TY  - JOUR
AU  - G. A. Tolstikhina
AU  - A. M. Shelekhov
TI  - On the three-web associated to the core of a~left Bol three-web
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 83
EP  - 88
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_12_a7/
LA  - ru
ID  - IVM_2014_12_a7
ER  - 
%0 Journal Article
%A G. A. Tolstikhina
%A A. M. Shelekhov
%T On the three-web associated to the core of a~left Bol three-web
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 83-88
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_12_a7/
%G ru
%F IVM_2014_12_a7
G. A. Tolstikhina; A. M. Shelekhov. On the three-web associated to the core of a~left Bol three-web. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 83-88. http://geodesic.mathdoc.fr/item/IVM_2014_12_a7/