On the three-web associated to the core of a~left Bol three-web
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 83-88
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $B_\ell$ be a left Bol three-web given on $2r$-dimensional smooth manifold, let $CB_\ell$ be the left Bol three-web, associated to the core of $3$-web $B_\ell$, let $CCB_\ell$ be the left Bol three-web, associated to the core of $3$-web $CB_\ell$. We prove that the three-webs $CB_\ell$ and $CCB_\ell$ are equivalent.
Keywords:
Bol three-web, core of Bol three-web.
@article{IVM_2014_12_a7,
author = {G. A. Tolstikhina and A. M. Shelekhov},
title = {On the three-web associated to the core of a~left {Bol} three-web},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {83--88},
publisher = {mathdoc},
number = {12},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_12_a7/}
}
TY - JOUR AU - G. A. Tolstikhina AU - A. M. Shelekhov TI - On the three-web associated to the core of a~left Bol three-web JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 83 EP - 88 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_12_a7/ LA - ru ID - IVM_2014_12_a7 ER -
G. A. Tolstikhina; A. M. Shelekhov. On the three-web associated to the core of a~left Bol three-web. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 83-88. http://geodesic.mathdoc.fr/item/IVM_2014_12_a7/