Simultaneous diagonalization of three real symmetric matrices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 70-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate and prove necessary and sufficient conditions of simultaneous diagonalization of three real symmetric matrices of regular pencil to diagonal ones. The conditions are algebraic and consist, in particular, of two spectral requirements and one matrix equality. For degenerate matrix pencil we suggest an approach that allows to reduce the analysis to a regular pencil. With the use of obtained theorems we investigate a decomposition of linear gyroscopic system into subsystems of an order not higher than two and a stability of trivial solution to a system.
Keywords: matrix pencil, simultaneous diagonalization
Mots-clés : real congruent transformation.
@article{IVM_2014_12_a6,
     author = {M. A. Novikov},
     title = {Simultaneous diagonalization of three real symmetric matrices},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--82},
     publisher = {mathdoc},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_12_a6/}
}
TY  - JOUR
AU  - M. A. Novikov
TI  - Simultaneous diagonalization of three real symmetric matrices
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 70
EP  - 82
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_12_a6/
LA  - ru
ID  - IVM_2014_12_a6
ER  - 
%0 Journal Article
%A M. A. Novikov
%T Simultaneous diagonalization of three real symmetric matrices
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 70-82
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_12_a6/
%G ru
%F IVM_2014_12_a6
M. A. Novikov. Simultaneous diagonalization of three real symmetric matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 70-82. http://geodesic.mathdoc.fr/item/IVM_2014_12_a6/

[1] Chetaev N. G., Ustoichivost dvizheniya. Raboty po analiticheskoi mekhanike, Izd-vo AN SSSR, M., 1962 | MR

[2] Kuzmin P. A., Malye kolebaniya i ustoichivost dvizheniya, Nauka, M., 1973

[3] Merkin D. R., Vvedenie v teoriyu ustoichivosti dvizheniya, Nauka, M., 1971 | MR | Zbl

[4] Appel P., Teoreticheskaya mekhanika, v. 2, GIFML, M., 1960

[5] Uitteker E. T., Analiticheskaya dinamika, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999

[6] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[7] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR

[8] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[9] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR

[10] Klingenberg W., “Paare symmetrischen und alternierenden Formen zweiten Grades”, Abhandl. Math. Sem. Univ. Hamburg, 19 (1955), 78–93 | DOI | MR

[11] Gaughey T. K., O'Kelly M. E. J., “Classical normal modes in damped linear dynamic systems”, American Society of Mechan. Engineers J. of Appl. Mech. Series E, 32 (1965), 583–588 | DOI | MR

[12] Kumar Mitra, “Simultaneous diagonalization of rectangular matrices”, Linear Algebra and Appl., 47 (1982), 139–150 | DOI | MR | Zbl

[13] Bulatovich R. M., “Ob ustoichivosti lineinykh potentsialnykh giroskopicheskikh sistem v sluchayakh, kogda potentsialnaya energiya imeet maksimum”, PMM, 61:3 (1997), 385–389 | MR | Zbl

[14] Kozlov V. V., “Giroskopicheskaya stabilizatsiya i parametricheskii rezonans”, PMM, 65:5 (2001), 739–745 | MR | Zbl

[15] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966 | MR | Zbl