Boundary-value problem for degenerate parabolic equation of high order with varying direction of time
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

In the introduction we give a review of related works. In the present paper we investigate a boundary-value problem in a rectangular domain and prove the existence of unique regular solution to this problem. In the proof of the uniqueness of the solution we use the spectral method, and in the proof of existence of solution to considered problem we use the method of separation of variables.
Keywords: degenerate parabolic equation, regular solution, spectral method, separation of variables, Cauchy–Bunyakovskii inequality.
@article{IVM_2014_12_a0,
     author = {D. Amanov},
     title = {Boundary-value problem for degenerate parabolic equation of high order with varying direction of time},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {12},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_12_a0/}
}
TY  - JOUR
AU  - D. Amanov
TI  - Boundary-value problem for degenerate parabolic equation of high order with varying direction of time
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 8
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_12_a0/
LA  - ru
ID  - IVM_2014_12_a0
ER  - 
%0 Journal Article
%A D. Amanov
%T Boundary-value problem for degenerate parabolic equation of high order with varying direction of time
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-8
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_12_a0/
%G ru
%F IVM_2014_12_a0
D. Amanov. Boundary-value problem for degenerate parabolic equation of high order with varying direction of time. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2014), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_2014_12_a0/