Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_11_a7, author = {A. V. Chernov}, title = {On convexity local conditions for attainable tubes of controlled distributed systems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {72--86}, publisher = {mathdoc}, number = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a7/} }
TY - JOUR AU - A. V. Chernov TI - On convexity local conditions for attainable tubes of controlled distributed systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 72 EP - 86 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_11_a7/ LA - ru ID - IVM_2014_11_a7 ER -
A. V. Chernov. On convexity local conditions for attainable tubes of controlled distributed systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 72-86. http://geodesic.mathdoc.fr/item/IVM_2014_11_a7/
[1] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[2] Polyak B., “Convexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics of continuous, discrete and impulsive systems. Ser. A. Mathematical Analysis, 11:2–3 (2004), 255–267 | MR | Zbl
[3] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl
[4] Egorov A. I., Osnovy teorii upravleniya, Fizmatlit, M., 2005 | MR
[5] Vakhrameev S. A., “Zamechanie o vypuklosti v gladkikh nelineinykh sistemakh”, Optim. upravlenie – 1, Itogi nauki i tekhniki. Ser. Sovrem. matem. i ee pril. Tematich. obzory, 60, VINITI, 1998, 42–73 | MR | Zbl
[6] Topunov M. V., “O vypuklosti mnozhestva dostizhimosti gladkoi upravlyaemoi sistemy, lineinoi po fazovym peremennym”, Avtomatika i telemekhanika, 2004, no. 11, 79–85 | MR | Zbl
[7] Cannarsa P., Sinestrari C., “Convexity properties of the minimum time function”, Calc. Var. Partial Differential Equations, 3:3 (1995), 273–298 | DOI | MR | Zbl
[8] Polyak B. T., “Lokalnoe programmirovanie”, Zhurn. vychisl. matem. i matem. fiz., 41:9 (2001), 1324–1331 | MR | Zbl
[9] Krabs W., Sklyar G. M., Wozniak J., “On the set of reachable states in the problem of controllability of rotating Timoshenko beams”, J. Anal. Anwendungen, 22:1 (2003), 215–228 | DOI | MR | Zbl
[10] Djebali S., Gorniewicz L., Ouahab A., “First-order periodic impulsive semilinear differential inclusions: existence and structure of solution sets”, Math. Comput. Modelling, 52:5–6 (2010), 683–714 | DOI | MR | Zbl
[11] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl
[12] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurn. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21 | MR | Zbl
[13] Sumin V. I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, Chast I, Izd-vo NNGU, N. Novgorod, 1992
[14] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matem. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | Zbl
[15] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2011, no. 3, 95–107 | MR | Zbl
[16] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2012, no. 3, 62–73 | MR | Zbl
[17] Chernov A. V., “O dostatochnykh usloviyakh upravlyaemosti nelineinykh raspredelennykh sistem”, Zhurn. vychisl. matem. i matem. fiz., 52:8 (2012), 1400–1414 | MR | Zbl
[18] Chernov A. V., “Ob upravlyaemosti nelineinykh raspredelennykh sistem na mnozhestve konechnomernykh approksimatsii upravleniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 1, 83–98
[19] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl
[20] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002
[21] Chernov A. V., “O potochechnoi otsenke raznosti reshenii upravlyaemogo funktsionalno-operatornogo uravneniya v lebegovykh prostranstvakh”, Matem. zametki, 88:2 (2010), 288–302 | DOI | MR | Zbl
[22] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl
[23] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[24] G. Stark (red.), Rekonstruktsiya izobrazhenii, Mir, M., 1992
[25] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, GITTL, M., 1953