On convexity local conditions for attainable tubes of controlled distributed systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 72-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear functional operator equation being a form of describing for a wide class of controlled initial boundary-value problems, we introduce the concept of abstract attainable set as an analog of the attainable tube concept. We obtain local sufficient conditions for the convexity of such a set. Using the general results is illustrated by example of the mixed boundary-value problem associated with a semilinear hyperbolic equation of the second order and a rather general form.
Keywords: attainable tube, convexity local conditions, functional operator equation, nonlinear distributed systems.
@article{IVM_2014_11_a7,
     author = {A. V. Chernov},
     title = {On convexity local conditions for attainable tubes of controlled distributed systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--86},
     publisher = {mathdoc},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a7/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On convexity local conditions for attainable tubes of controlled distributed systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 72
EP  - 86
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_11_a7/
LA  - ru
ID  - IVM_2014_11_a7
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On convexity local conditions for attainable tubes of controlled distributed systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 72-86
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_11_a7/
%G ru
%F IVM_2014_11_a7
A. V. Chernov. On convexity local conditions for attainable tubes of controlled distributed systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 72-86. http://geodesic.mathdoc.fr/item/IVM_2014_11_a7/

[1] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[2] Polyak B., “Convexity of the reachable set of nonlinear systems under $L_2$ bounded controls”, Dynamics of continuous, discrete and impulsive systems. Ser. A. Mathematical Analysis, 11:2–3 (2004), 255–267 | MR | Zbl

[3] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl

[4] Egorov A. I., Osnovy teorii upravleniya, Fizmatlit, M., 2005 | MR

[5] Vakhrameev S. A., “Zamechanie o vypuklosti v gladkikh nelineinykh sistemakh”, Optim. upravlenie – 1, Itogi nauki i tekhniki. Ser. Sovrem. matem. i ee pril. Tematich. obzory, 60, VINITI, 1998, 42–73 | MR | Zbl

[6] Topunov M. V., “O vypuklosti mnozhestva dostizhimosti gladkoi upravlyaemoi sistemy, lineinoi po fazovym peremennym”, Avtomatika i telemekhanika, 2004, no. 11, 79–85 | MR | Zbl

[7] Cannarsa P., Sinestrari C., “Convexity properties of the minimum time function”, Calc. Var. Partial Differential Equations, 3:3 (1995), 273–298 | DOI | MR | Zbl

[8] Polyak B. T., “Lokalnoe programmirovanie”, Zhurn. vychisl. matem. i matem. fiz., 41:9 (2001), 1324–1331 | MR | Zbl

[9] Krabs W., Sklyar G. M., Wozniak J., “On the set of reachable states in the problem of controllability of rotating Timoshenko beams”, J. Anal. Anwendungen, 22:1 (2003), 215–228 | DOI | MR | Zbl

[10] Djebali S., Gorniewicz L., Ouahab A., “First-order periodic impulsive semilinear differential inclusions: existence and structure of solution sets”, Math. Comput. Modelling, 52:5–6 (2010), 683–714 | DOI | MR | Zbl

[11] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl

[12] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurn. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21 | MR | Zbl

[13] Sumin V. I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, Chast I, Izd-vo NNGU, N. Novgorod, 1992

[14] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matem. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | Zbl

[15] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2011, no. 3, 95–107 | MR | Zbl

[16] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2012, no. 3, 62–73 | MR | Zbl

[17] Chernov A. V., “O dostatochnykh usloviyakh upravlyaemosti nelineinykh raspredelennykh sistem”, Zhurn. vychisl. matem. i matem. fiz., 52:8 (2012), 1400–1414 | MR | Zbl

[18] Chernov A. V., “Ob upravlyaemosti nelineinykh raspredelennykh sistem na mnozhestve konechnomernykh approksimatsii upravleniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 1, 83–98

[19] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[20] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[21] Chernov A. V., “O potochechnoi otsenke raznosti reshenii upravlyaemogo funktsionalno-operatornogo uravneniya v lebegovykh prostranstvakh”, Matem. zametki, 88:2 (2010), 288–302 | DOI | MR | Zbl

[22] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[23] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[24] G. Stark (red.), Rekonstruktsiya izobrazhenii, Mir, M., 1992

[25] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, GITTL, M., 1953