Statistical characteristics of attainability set of controllable systems with random coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 50-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

For controllable systems with random coefficients we study a property of statistical invariance, satisfied with given probability. We obtain sufficient conditions for invariance of a set with respect to controllable system expressed in terms of Lyapunov functions and shift dynamic system. We study the statistical characteristics of attainability set of a controllable system which is parameterized by metric dynamic system.
Keywords: controllable systems, dynamic systems, differential inclusions, statistically invariant sets.
@article{IVM_2014_11_a5,
     author = {L. I. Rodina and A. Kh. Khammadi},
     title = {Statistical characteristics of attainability set of controllable systems with random coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {50--63},
     publisher = {mathdoc},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a5/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - A. Kh. Khammadi
TI  - Statistical characteristics of attainability set of controllable systems with random coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 50
EP  - 63
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_11_a5/
LA  - ru
ID  - IVM_2014_11_a5
ER  - 
%0 Journal Article
%A L. I. Rodina
%A A. Kh. Khammadi
%T Statistical characteristics of attainability set of controllable systems with random coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 50-63
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_11_a5/
%G ru
%F IVM_2014_11_a5
L. I. Rodina; A. Kh. Khammadi. Statistical characteristics of attainability set of controllable systems with random coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 50-63. http://geodesic.mathdoc.fr/item/IVM_2014_11_a5/

[1] Rodina L. I., Tonkov E. L., “Statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Vestn. Udmurtsk. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 67–86

[2] Rodina L. I., “Prostranstvo $\mathrm{clcv}(\mathbb R^n)$ s metrikoi Khausdorfa–Bebutova i statisticheski invariantnye mnozhestva upravlyaemykh sistem”, Tr. Matem. inst. im. V. A. Steklova, 278, 2012, 217–226 | MR

[3] Rodina L. I., “Invariantnye i statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Izvestiya Instituta matematiki i informatiki UdGU (Izhevsk), 2012, no. 2(40), 3–164

[4] Rodina L. I., “Otsenka statisticheskikh kharakteristik mnozhestva dostizhimosti upravlyaemykh sistem”, Izv. vuzov. Matem., 2013, no. 11, 20–32 | Zbl

[5] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[6] Panasenko E. A., Tonkov E. L., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Tr. Matem. inst. im. V. A. Steklova, 262, 2008, 202–221 | MR | Zbl

[7] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[8] Lakshmikantham V., Leela S., Differential and integral inequalities: theory and applications, Mathematics in Science and Engineering, 55, Academic Press, New York, 1969

[9] Lakshmikantham V., Leela S., Martinyuk A. A., Stability analysis of nonlinear systems, Marcel Dekker, New York, 1989 | MR | Zbl

[10] Masterkov Yu. V., Rodina L. I., “Dostatochnye usloviya lokalnoi upravlyaemosti sistem so sluchainymi parametrami dlya proizvolnogo chisla sostoyanii sistemy”, Izv. vuzov. Matem., 2008, no. 3, 38–49 | MR | Zbl

[11] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR

[12] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike, Nauka, M., 1985 | MR | Zbl

[13] Panasenko E. A., Tonkov E. L., “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Tr. Inst. matem. i mekhaniki UrO RAN, 15, no. 3, 2009, 185–201