On representation of Stinespring's type for $n$-tuple completely positive maps in Hilbert $C^\star$-modules
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 42-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analog of Stinesping's theorem for $n$-tuple of the completely positive maps in Hilbert $C^\star$-modules.
Keywords: Hilbert $C^\star$-modules, $C^\star$-algebras, $\star$-homomorphisms, completely positive maps, $n$-completely positive maps.
@article{IVM_2014_11_a4,
     author = {M. A. Pliev and I. D. Tsopanov},
     title = {On representation of {Stinespring's} type for $n$-tuple completely positive maps in {Hilbert} $C^\star$-modules},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--49},
     publisher = {mathdoc},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a4/}
}
TY  - JOUR
AU  - M. A. Pliev
AU  - I. D. Tsopanov
TI  - On representation of Stinespring's type for $n$-tuple completely positive maps in Hilbert $C^\star$-modules
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 42
EP  - 49
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_11_a4/
LA  - ru
ID  - IVM_2014_11_a4
ER  - 
%0 Journal Article
%A M. A. Pliev
%A I. D. Tsopanov
%T On representation of Stinespring's type for $n$-tuple completely positive maps in Hilbert $C^\star$-modules
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 42-49
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_11_a4/
%G ru
%F IVM_2014_11_a4
M. A. Pliev; I. D. Tsopanov. On representation of Stinespring's type for $n$-tuple completely positive maps in Hilbert $C^\star$-modules. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 42-49. http://geodesic.mathdoc.fr/item/IVM_2014_11_a4/

[1] Stinespring F., “Positive functions on $C^\star$-algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 211–216 | MR | Zbl

[2] Heo J., “Completely multi-positive linear maps and representations on Hilbert $C^\star$-modules”, J. Operator Theory, 41:1 (1999), 3–22 | MR | Zbl

[3] Asadi M. B., “Stinespring's theorem for Hilbert $C^\star$-modules”, J. Operator Theory, 62:2 (2009), 235–238 | MR | Zbl

[4] Bhat R., Ramesh G., Sumesh K., “Stinespring's theorem for maps on Hilbert $C^\star$-modules”, J. Operator Theory, 68:1 (2012), 173–178 | MR | Zbl

[5] Skeide M., “A factorization theorem for $\varphi$-maps”, J. Operator Theory, 68:2 (2012), 543–547 | MR | Zbl

[6] Joita M., “Covariant version of the Stinespring type theorem for Hilbert $C^\star$-modules”, Cent. Eur. J. Math., 9:4 (2011), 803–813 | DOI | MR | Zbl

[7] Joita M., Comparision of completely positive maps on Hilbert $C^\star$-modules, arXiv: 1201.0593v1 | MR

[8] Maliev I. N., Pliev M. A., “O predstavlenii tipa Stainspringa dlya operatorov v gilbertovykh modulyakh nad lokalnymi $C^\star$-algebrami”, Izv. vuzov. Matem., 2012, no. 12, 51–58 | MR | Zbl

[9] Manuilov V. M., Troitskii E. V., $C^\star$-gilbertovy moduli, Faktorial, M., 2001

[10] Merfi D., $C^\star$-algebry i teoriya operatorov, Faktorial, M., 1997

[11] Lance E. C., Hilbert $C^\star$-modules. A toolkit for operator algebraists, Cambridge University Press, 1995 | MR | Zbl

[12] Paulsen V., Completly bounded maps and operator algebras, Cambridge University Press, 2002 | MR | Zbl

[13] Joita M., Completely positive linear maps on pro-$C^\star$-algebras, University of Bucharest Press, 2008 | Zbl