Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_11_a4, author = {M. A. Pliev and I. D. Tsopanov}, title = {On representation of {Stinespring's} type for $n$-tuple completely positive maps in {Hilbert} $C^\star$-modules}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {42--49}, publisher = {mathdoc}, number = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a4/} }
TY - JOUR AU - M. A. Pliev AU - I. D. Tsopanov TI - On representation of Stinespring's type for $n$-tuple completely positive maps in Hilbert $C^\star$-modules JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 42 EP - 49 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_11_a4/ LA - ru ID - IVM_2014_11_a4 ER -
%0 Journal Article %A M. A. Pliev %A I. D. Tsopanov %T On representation of Stinespring's type for $n$-tuple completely positive maps in Hilbert $C^\star$-modules %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2014 %P 42-49 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2014_11_a4/ %G ru %F IVM_2014_11_a4
M. A. Pliev; I. D. Tsopanov. On representation of Stinespring's type for $n$-tuple completely positive maps in Hilbert $C^\star$-modules. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 42-49. http://geodesic.mathdoc.fr/item/IVM_2014_11_a4/
[1] Stinespring F., “Positive functions on $C^\star$-algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 211–216 | MR | Zbl
[2] Heo J., “Completely multi-positive linear maps and representations on Hilbert $C^\star$-modules”, J. Operator Theory, 41:1 (1999), 3–22 | MR | Zbl
[3] Asadi M. B., “Stinespring's theorem for Hilbert $C^\star$-modules”, J. Operator Theory, 62:2 (2009), 235–238 | MR | Zbl
[4] Bhat R., Ramesh G., Sumesh K., “Stinespring's theorem for maps on Hilbert $C^\star$-modules”, J. Operator Theory, 68:1 (2012), 173–178 | MR | Zbl
[5] Skeide M., “A factorization theorem for $\varphi$-maps”, J. Operator Theory, 68:2 (2012), 543–547 | MR | Zbl
[6] Joita M., “Covariant version of the Stinespring type theorem for Hilbert $C^\star$-modules”, Cent. Eur. J. Math., 9:4 (2011), 803–813 | DOI | MR | Zbl
[7] Joita M., Comparision of completely positive maps on Hilbert $C^\star$-modules, arXiv: 1201.0593v1 | MR
[8] Maliev I. N., Pliev M. A., “O predstavlenii tipa Stainspringa dlya operatorov v gilbertovykh modulyakh nad lokalnymi $C^\star$-algebrami”, Izv. vuzov. Matem., 2012, no. 12, 51–58 | MR | Zbl
[9] Manuilov V. M., Troitskii E. V., $C^\star$-gilbertovy moduli, Faktorial, M., 2001
[10] Merfi D., $C^\star$-algebry i teoriya operatorov, Faktorial, M., 1997
[11] Lance E. C., Hilbert $C^\star$-modules. A toolkit for operator algebraists, Cambridge University Press, 1995 | MR | Zbl
[12] Paulsen V., Completly bounded maps and operator algebras, Cambridge University Press, 2002 | MR | Zbl
[13] Joita M., Completely positive linear maps on pro-$C^\star$-algebras, University of Bucharest Press, 2008 | Zbl