The Riemann problem for functions with polar lines of higher orders
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a solution of jump problem of homogeneous and inhomogeneous problem for functions which have peculiarity of polar line of order $p_k+1$, $p_k\geq0$. We investigate the cases of continuous and discontinuous coefficients. In particular case with $p_k=0$ the obtained results follow from the results obtained earlier.
Keywords: Riemann problem, polar line, order of polar line, integer function, linear meromorphic function, canonical function, generalized canonical function.
@article{IVM_2014_11_a0,
     author = {A. I. Afonina and I. G. Salekhova},
     title = {The {Riemann} problem for functions with polar lines of higher orders},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a0/}
}
TY  - JOUR
AU  - A. I. Afonina
AU  - I. G. Salekhova
TI  - The Riemann problem for functions with polar lines of higher orders
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 12
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_11_a0/
LA  - ru
ID  - IVM_2014_11_a0
ER  - 
%0 Journal Article
%A A. I. Afonina
%A I. G. Salekhova
%T The Riemann problem for functions with polar lines of higher orders
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-12
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_11_a0/
%G ru
%F IVM_2014_11_a0
A. I. Afonina; I. G. Salekhova. The Riemann problem for functions with polar lines of higher orders. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2014_11_a0/

[1] Chibrikova L. I., Salekhova I. G., “Zadacha Rimana v sluchae schetnogo mnozhestva konturov”, Tr. seminara po kraevym zadacham, 9, Izd-vo KGU, Kazan, 1972, 216–233 | MR | Zbl

[2] Chibrikova L. I., Osnovnye granichnye zadachi dlya analiticheskikh funktsii, Izd-vo Kazansk. un-ta, Kazan, 1977

[3] Golubev V. V., Odnoznachnye analiticheskie funktsii. Avtomorfnye funktsii, Fizmatlit, M., 1961 | MR

[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Fizmatgiz, M., 1962