The Riemann problem for functions with polar lines of higher orders
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 3-12
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a solution of jump problem of homogeneous and inhomogeneous problem for functions which have peculiarity of polar line of order $p_k+1$, $p_k\geq0$. We investigate the cases of continuous and discontinuous coefficients. In particular case with $p_k=0$ the obtained results follow from the results obtained earlier.
Keywords:
Riemann problem, polar line, order of polar line, integer function, linear meromorphic function, canonical function, generalized canonical function.
@article{IVM_2014_11_a0,
author = {A. I. Afonina and I. G. Salekhova},
title = {The {Riemann} problem for functions with polar lines of higher orders},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--12},
year = {2014},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2014_11_a0/}
}
A. I. Afonina; I. G. Salekhova. The Riemann problem for functions with polar lines of higher orders. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2014), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2014_11_a0/
[1] Chibrikova L. I., Salekhova I. G., “Zadacha Rimana v sluchae schetnogo mnozhestva konturov”, Tr. seminara po kraevym zadacham, 9, Izd-vo KGU, Kazan, 1972, 216–233 | MR | Zbl
[2] Chibrikova L. I., Osnovnye granichnye zadachi dlya analiticheskikh funktsii, Izd-vo Kazansk. un-ta, Kazan, 1977
[3] Golubev V. V., Odnoznachnye analiticheskie funktsii. Avtomorfnye funktsii, Fizmatlit, M., 1961 | MR
[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Fizmatgiz, M., 1962