Estimates of a~spectrum of the integral means for lacunary series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 79-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an upper estimate for the integral means spectrum of conformal mappings generated by lacunary power series with Hadamard gaps.
Keywords: conformal mappings, lacunary series, integral means spectrum.
@article{IVM_2014_10_a8,
     author = {I. R. Kayumov and D. V. Maklakov and F. D. Kayumov},
     title = {Estimates of a~spectrum of the integral means for lacunary series},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--85},
     publisher = {mathdoc},
     number = {10},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_10_a8/}
}
TY  - JOUR
AU  - I. R. Kayumov
AU  - D. V. Maklakov
AU  - F. D. Kayumov
TI  - Estimates of a~spectrum of the integral means for lacunary series
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 79
EP  - 85
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_10_a8/
LA  - ru
ID  - IVM_2014_10_a8
ER  - 
%0 Journal Article
%A I. R. Kayumov
%A D. V. Maklakov
%A F. D. Kayumov
%T Estimates of a~spectrum of the integral means for lacunary series
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 79-85
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_10_a8/
%G ru
%F IVM_2014_10_a8
I. R. Kayumov; D. V. Maklakov; F. D. Kayumov. Estimates of a~spectrum of the integral means for lacunary series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 79-85. http://geodesic.mathdoc.fr/item/IVM_2014_10_a8/

[1] Pommerenke Ch., Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992 | MR | Zbl

[2] Makarov N. G., “Fine structure of harmonic measure”, St. Petersbg. Math. J., 10:2 (1999), 217–268 | MR | Zbl

[3] Pommerenke Ch., “On the integral means of the derivative of a univalent function”, J. London Math. Soc., 32:2 (1985), 254–258 | DOI | MR | Zbl

[4] Hedenmalm H., Shimorin S., “On the universal integral means spectrum of conformal mappings near the origin”, Proc. Amer. Math. Soc., 135 (2007), 2249–2255 | DOI | MR | Zbl

[5] Makarov N. G., “A note on the integral means of the derivative in conformal mapping”, Proc. Amer. Math. Soc., 96 (1986), 233–236 | DOI | MR | Zbl

[6] Kayumov I. R., “Lower estimates for integral means of univalent functions”, Arkiv för Matematik, 44:1 (2006), 104–110 | DOI | MR | Zbl

[7] Carleson L., Jones P. W., “On coefficient problems for univalent functions and conformal dimension”, Duke Math. J., 66:2 (1992), 169–206 | DOI | MR | Zbl

[8] Kraetzer Ph., “Experimental bounds for the universal integral means spectrum of conformal maps”, Complex Variables, 31 (1996), 305–309 | MR | Zbl

[9] Beliaev D., Smirnov S., “Random conformal snowflakes”, Ann. of Math. (2), 172:1 (2010), 597–615 | DOI | MR | Zbl

[10] Kayumov I. R., “A distortion theorem for univalent gap series”, Sib. Math. J., 44:6 (2003), 997–1002 | DOI | MR | Zbl