A problem with nonlocal conditions for mixed-type equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 35-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a problem with Bitsadze–Samarskii conditions on a boundary of ellipticity and on a segment of line of degeneration with a condition of boundary characteristics of the Gellerstedt equation with singular coefficient. With the help of the maximum principle we prove uniqueness of a solution to the problem, and with the help of the method of integral equations we prove the existence of a solution to the problem.
Mots-clés : singular coefficient
Keywords: uniqueness of solution to a problem, Wiener–Hopf equation, index of an equation.
@article{IVM_2014_10_a4,
     author = {Gulbakhor M. Mirsaburova},
     title = {A problem with nonlocal conditions for mixed-type equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--42},
     publisher = {mathdoc},
     number = {10},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_10_a4/}
}
TY  - JOUR
AU  - Gulbakhor M. Mirsaburova
TI  - A problem with nonlocal conditions for mixed-type equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 35
EP  - 42
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_10_a4/
LA  - ru
ID  - IVM_2014_10_a4
ER  - 
%0 Journal Article
%A Gulbakhor M. Mirsaburova
%T A problem with nonlocal conditions for mixed-type equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 35-42
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_10_a4/
%G ru
%F IVM_2014_10_a4
Gulbakhor M. Mirsaburova. A problem with nonlocal conditions for mixed-type equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 35-42. http://geodesic.mathdoc.fr/item/IVM_2014_10_a4/

[1] Salakhitdinov M. S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, “Universitet”, “Yangiyo'l poligraf servis”, Tashkent, 2005

[2] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, DAN SSSR, 185:4 (1969), 739–740 | Zbl

[3] Zhegalov V. I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s granichnymi usloviyami na perekhodnoi linii”, Uchen. zap. Kazansk. un-ta, 122, no. 3, 1962, 3–16 | MR | Zbl

[4] Frankl F. I., “Obtekanie profilei gazom s mestnoi sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom uplotneniya”, PMM, 20:2 (1956), 196–202 | MR | Zbl

[5] Devingtal Yu. V., “O suschestvovanii i edinstvennosti resheniya odnoi zadachi F. I. Franklya”, Izv. vuzov. Matem., 1958, no. 3, 39–51 | MR | Zbl

[6] Kapustin N. Yu., Sabitov K. B., “O reshenii odnoi problemy v teorii zadachi Franklya dlya uravnenii smeshannogo tipa”, Differents. uravneniya, 27:1 (1991), 60–68 | MR | Zbl

[7] Mirsaburova Gulnora, “Zadacha s analogami uslovii Franklya i Bitsadze–Samarskogo dlya uravneniya Gellerstedta”, Izv. vuzov. Matem., 2011, no. 3, 60–68 | MR

[8] Sabitov K. B., Isyangildin A. Kh., “Zadacha tipa Trikomi s nelokalnym usloviem sopryazheniya dlya odnogo uravneniya smeshannogo tipa”, Dokl. RAN, 326:5 (1992), 787–791 | MR | Zbl

[9] Sabitov K. B., Isyangildin A. Kh., “Zadacha Trikomi s nelokalnym usloviem sopryazheniya dlya obobshennogo uravneniya Trikomi”, Differents. uravneniya, 32:3 (1996), 409–412 | MR | Zbl

[10] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR | Zbl

[11] Babenko K. I., K teorii uravnenii smeshannogo tipa, Diss. $\dotsc$ dokt. fiz.-matem. nauk, Matem. in-t im. V. A. Steklova RAN, 1952

[12] Polosin A. A., “Ob odnoznachnoi razreshimosti zadachi Trikomi dlya spetsialnoi oblasti”, Differents. uravneniya, 32:3 (1996), 394–401 | MR | Zbl

[13] Mirsaburov M., “Kraevaya zadacha dlya odnogo klassa uravnenii smeshannogo tipa s usloviem Bitsadze–Samarskogo na parallelnykh kharakteristikakh”, Differents. uravneniya, 39:9 (2001), 1281–1284 | MR

[14] Mikhlin S. G., “Ob integralnom uravnenii F. Trikomi”, DAN SSSR, 59:6 (1948), 1053–1056

[15] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl