Laplace invariants for fourth-order equation with two independent variables
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 27-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the Laplace invariants for fourth-order equation with leading partial derivative. We obtain classes of equations admitting four-dimensional Lie algebras.
Keywords: equations with leading partial derivative, Lie algebra.
Mots-clés : Laplace invariants
@article{IVM_2014_10_a3,
     author = {A. N. Mironov and L. B. Mironova},
     title = {Laplace invariants for fourth-order equation with two independent variables},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--34},
     publisher = {mathdoc},
     number = {10},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_10_a3/}
}
TY  - JOUR
AU  - A. N. Mironov
AU  - L. B. Mironova
TI  - Laplace invariants for fourth-order equation with two independent variables
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 27
EP  - 34
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_10_a3/
LA  - ru
ID  - IVM_2014_10_a3
ER  - 
%0 Journal Article
%A A. N. Mironov
%A L. B. Mironova
%T Laplace invariants for fourth-order equation with two independent variables
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 27-34
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_10_a3/
%G ru
%F IVM_2014_10_a3
A. N. Mironov; L. B. Mironova. Laplace invariants for fourth-order equation with two independent variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 27-34. http://geodesic.mathdoc.fr/item/IVM_2014_10_a3/

[1] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[2] Ibragimov N. Kh., “Gruppovoi analiz obyknovennykh differentsialnykh uravnenii i printsip invariantnosti v matematicheskoi fizike”, UMN, 47:4 (1992), 83–144 | MR | Zbl

[3] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, In. lit., M., 1957

[4] Soldatov A. P., Shkhanukov M. Kh., “Kraevye zadachi s obschim nelokalnym usloviem A. A. Samarskogo dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, DAN SSSR, 297:3 (1987), 547–552 | MR

[5] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matem., 1999, no. 10, 73–76 | MR | Zbl

[6] Dzhokhadze O. M., “Vliyanie mladshikh chlenov na korrektnost postanovki kharakteristicheskikh zadach dlya giperbolicheskikh uravnenii tretego poryadka”, Matem. zametki, 74:4 (2003), 517–528 | DOI | MR | Zbl

[7] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006 | Zbl

[8] Dzhokhadze O. M., “Ob invariantakh Laplasa dlya nekotorykh klassov lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 40:1 (2004), 58–68 | MR | Zbl

[9] Mironov A. N., “Ob invariantakh Laplasa odnogo uravneniya chetvertogo poryadka”, Differents. uravneniya, 45:8 (2009), 1144–1149 | MR | Zbl

[10] Utkina E. A., “Ob odnom uravnenii v chastnykh proizvodnykh s singulyarnymi koeffitsientami”, Izv. vuzov. Matem., 2006, no. 9, 67–70 | MR

[11] Utkina E. A., “Ob odnom primenenii metoda kaskadnogo integrirovaniya”, Differents. uravneniya, 43:4 (2007), 566–569 | MR | Zbl