Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2014_10_a0, author = {T. S. Aleroev and Kh. T. Aleroeva}, title = {On a~class of non-selfadjoint operators, corresponding to differential equations of fractional order}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--12}, publisher = {mathdoc}, number = {10}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2014_10_a0/} }
TY - JOUR AU - T. S. Aleroev AU - Kh. T. Aleroeva TI - On a~class of non-selfadjoint operators, corresponding to differential equations of fractional order JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2014 SP - 3 EP - 12 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2014_10_a0/ LA - ru ID - IVM_2014_10_a0 ER -
%0 Journal Article %A T. S. Aleroev %A Kh. T. Aleroeva %T On a~class of non-selfadjoint operators, corresponding to differential equations of fractional order %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2014 %P 3-12 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2014_10_a0/ %G ru %F IVM_2014_10_a0
T. S. Aleroev; Kh. T. Aleroeva. On a~class of non-selfadjoint operators, corresponding to differential equations of fractional order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2014_10_a0/
[1] Aleroev T. S., “Kraevye zadachi dlya differentsialnykh uravnenii drobnogo poryadka”, Sib. elektron. matem. izv., 10 (2013), 41–55 | MR
[2] Malamud M. M., Oridoroga L. L., “Analog teoremy Birkgofa i polnota rezultatov dlya differentsialnykh uravnenii drobnogo poryadka”, Rossiisk. zhurnal. matem. fiz., 8:3 (2001), 287–308 | MR | Zbl
[3] J. Math. Sci., 174:4, april (2011) | MR | Zbl
[4] Malamud M. M., “Similarity of Volterra operators and related questions of the theory of differential equations of fractional order”, Trans. Moscow Math. Soc., 55 (1994), 57–132 | MR
[5] Aleroev T. S., “Ob odnoi kraevoi zadache dlya differentsialnogo operatora drobnogo poryadka”, Differents. uravneniya, 34:1 (1998), 123 | MR | Zbl
[6] Kaufmann E. R., “Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem”, Discrete and continuous dynamical systems, 2009, 416–423 | MR | Zbl
[7] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, 2003 | Zbl
[8] Aleroev T. S., “O polnote sobstvennykh funktsii odnogo differentsialnogo operatora drobnogo poryadka”, Differents. uravneniya, 36:6 (2000), 829–830 | MR | Zbl
[9] Aleroev T. S., Kraevye zadachi dlya differentsialnykh uravnenii s drobnymi proizvodnymi, Diss. $\dotsc$ dokt. fiz.-matem. nauk, MGU, 2000
[10] Aleroev T. S., Aleroeva H. T., Ning-Ming Nie, Yi-Fa Tang, “Boundary value problems for differential equations of fractional order”, Mem. Diff. Equat. Math. Phys., 49 (2010), 19–82 | MR
[11] Aleroev T. S., Aleroeva H. T., “A problem on the zeros of the Mittag-Leffler function and the spectrum of a fractional-order differential operator”, Electron. J. Qual. Theory Diff. Equ., 2009, 25, 18 pp. | MR | Zbl
[12] Yuan Chengjun, “Multiple positive solutions for $(n-1,1)$-type semipositone conjugate boundary value problems of nonlinear fractional differential equations”, Electron. J. Qual. Theory Diff. Equ., 2010, 36, 12 pp. | MR
[13] Mainardi F., “Fractional relaxation-oscillation and fractional diffusion-wave phenomena chaos”, Solutions and Fractals, 7:9 (1996), 1461–1477 | DOI | MR | Zbl
[14] Aleroev T. S., “Ob odnom klasse operatorov, svyazannykh s differentsialnymi uravneniyami drobnogo poryadka”, Sib. matem. zhurn., 46:6 (2005), 1201–1207 | MR | Zbl
[15] Kekharsaeva E. R., Mikitaev A. K., Aleroev T. S., “Model deformatsionno-prochnostnykh kharakteristik khlorsoderzhaschikh poliefirov na osnove proizvodnykh drobnogo poryadka”, Plasticheskie massy, 2001, no. 3, 35
[16] Aleroev T. S., Gachaev A. M., “K probleme o nulyakh funktsii tipa Mittag-Lefflera”, Mater. Mezhdunarod. Rossiisko-Uzbekskogo simpoziuma “Uravneniya smeshannogo tipa i rodstvennye problemy analiza i informatiki”, Nalchik–Elbrus, 2003, 14–15
[17] Aleroev T. S., Aleroeva Kh. T., “Nekotorye primeneniya teorii vozmuschenii v drobnom ischislenii”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarod. akademii nauk, 10:2 (2008), 9–13
[18] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[19] Loginov B. V., “K otsenke tochnosti metoda vozmuschenii”, Izv. AN UzSSR. Ser. fiz.-matem., 1963, no. 6, 14–19 | MR