On a~class of non-selfadjoint operators, corresponding to differential equations of fractional order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a research method for non-selfadjoint integral operators, associated with differential equations of fractional order, within the frameworks of non-selfadjoint approach. In particular, we obtain estimates for the eigenfunctions and eigenvalues of the boundary-value problem for the fractional oscillatory equation.
Keywords: function of Mittag-Leffler type, spectrum, eigenvalue, fractional derivative.
@article{IVM_2014_10_a0,
     author = {T. S. Aleroev and Kh. T. Aleroeva},
     title = {On a~class of non-selfadjoint operators, corresponding to differential equations of fractional order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {10},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2014_10_a0/}
}
TY  - JOUR
AU  - T. S. Aleroev
AU  - Kh. T. Aleroeva
TI  - On a~class of non-selfadjoint operators, corresponding to differential equations of fractional order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2014
SP  - 3
EP  - 12
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2014_10_a0/
LA  - ru
ID  - IVM_2014_10_a0
ER  - 
%0 Journal Article
%A T. S. Aleroev
%A Kh. T. Aleroeva
%T On a~class of non-selfadjoint operators, corresponding to differential equations of fractional order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2014
%P 3-12
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2014_10_a0/
%G ru
%F IVM_2014_10_a0
T. S. Aleroev; Kh. T. Aleroeva. On a~class of non-selfadjoint operators, corresponding to differential equations of fractional order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2014), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2014_10_a0/

[1] Aleroev T. S., “Kraevye zadachi dlya differentsialnykh uravnenii drobnogo poryadka”, Sib. elektron. matem. izv., 10 (2013), 41–55 | MR

[2] Malamud M. M., Oridoroga L. L., “Analog teoremy Birkgofa i polnota rezultatov dlya differentsialnykh uravnenii drobnogo poryadka”, Rossiisk. zhurnal. matem. fiz., 8:3 (2001), 287–308 | MR | Zbl

[3] J. Math. Sci., 174:4, april (2011) | MR | Zbl

[4] Malamud M. M., “Similarity of Volterra operators and related questions of the theory of differential equations of fractional order”, Trans. Moscow Math. Soc., 55 (1994), 57–132 | MR

[5] Aleroev T. S., “Ob odnoi kraevoi zadache dlya differentsialnogo operatora drobnogo poryadka”, Differents. uravneniya, 34:1 (1998), 123 | MR | Zbl

[6] Kaufmann E. R., “Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem”, Discrete and continuous dynamical systems, 2009, 416–423 | MR | Zbl

[7] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, 2003 | Zbl

[8] Aleroev T. S., “O polnote sobstvennykh funktsii odnogo differentsialnogo operatora drobnogo poryadka”, Differents. uravneniya, 36:6 (2000), 829–830 | MR | Zbl

[9] Aleroev T. S., Kraevye zadachi dlya differentsialnykh uravnenii s drobnymi proizvodnymi, Diss. $\dotsc$ dokt. fiz.-matem. nauk, MGU, 2000

[10] Aleroev T. S., Aleroeva H. T., Ning-Ming Nie, Yi-Fa Tang, “Boundary value problems for differential equations of fractional order”, Mem. Diff. Equat. Math. Phys., 49 (2010), 19–82 | MR

[11] Aleroev T. S., Aleroeva H. T., “A problem on the zeros of the Mittag-Leffler function and the spectrum of a fractional-order differential operator”, Electron. J. Qual. Theory Diff. Equ., 2009, 25, 18 pp. | MR | Zbl

[12] Yuan Chengjun, “Multiple positive solutions for $(n-1,1)$-type semipositone conjugate boundary value problems of nonlinear fractional differential equations”, Electron. J. Qual. Theory Diff. Equ., 2010, 36, 12 pp. | MR

[13] Mainardi F., “Fractional relaxation-oscillation and fractional diffusion-wave phenomena chaos”, Solutions and Fractals, 7:9 (1996), 1461–1477 | DOI | MR | Zbl

[14] Aleroev T. S., “Ob odnom klasse operatorov, svyazannykh s differentsialnymi uravneniyami drobnogo poryadka”, Sib. matem. zhurn., 46:6 (2005), 1201–1207 | MR | Zbl

[15] Kekharsaeva E. R., Mikitaev A. K., Aleroev T. S., “Model deformatsionno-prochnostnykh kharakteristik khlorsoderzhaschikh poliefirov na osnove proizvodnykh drobnogo poryadka”, Plasticheskie massy, 2001, no. 3, 35

[16] Aleroev T. S., Gachaev A. M., “K probleme o nulyakh funktsii tipa Mittag-Lefflera”, Mater. Mezhdunarod. Rossiisko-Uzbekskogo simpoziuma “Uravneniya smeshannogo tipa i rodstvennye problemy analiza i informatiki”, Nalchik–Elbrus, 2003, 14–15

[17] Aleroev T. S., Aleroeva Kh. T., “Nekotorye primeneniya teorii vozmuschenii v drobnom ischislenii”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarod. akademii nauk, 10:2 (2008), 9–13

[18] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[19] Loginov B. V., “K otsenke tochnosti metoda vozmuschenii”, Izv. AN UzSSR. Ser. fiz.-matem., 1963, no. 6, 14–19 | MR