Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_9_a9, author = {R. G. Salakhudinov}, title = {Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {75--80}, publisher = {mathdoc}, number = {9}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/} }
TY - JOUR AU - R. G. Salakhudinov TI - Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 75 EP - 80 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/ LA - ru ID - IVM_2013_9_a9 ER -
%0 Journal Article %A R. G. Salakhudinov %T Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 75-80 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/ %G ru %F IVM_2013_9_a9
R. G. Salakhudinov. Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 75-80. http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/
[1] Bandle C., Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1980 | MR | Zbl
[2] Payne L. E., “Some isoperimetric inequalities in the torsion problem for multiply connected regions”, Studies in Mathematical analysis and Related Topics, Essays in honor of G. Pólya, Stanford University Press, Stanford, California, 1962, 270–280 | MR
[3] Hersch J., “Isoperimetric monotonicity: some properties and conjectures (connections between isoperimetric inequalities)”, SIAM Rev., 30:4 (1988), 551–577 | DOI | MR | Zbl
[4] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | DOI | MR | Zbl
[5] Salakhudinov R. G., “Izoperimetricheskaya monotonnost $l^p$-normy funktsii napryazheniya ploskoi odnosvyaznoi oblasti”, Izv. vuzov. Matem., 2010, no. 8, 59–68 | MR | Zbl