Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 75-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u(x,G)$ be the stress function of a multiply connected plane domain $G$. We construct new functionals depending on the stress function. The constructed functionals are isoperimetrically monotone with respect to the free parameter. A particular case of the proved result is the inequality of obtained by Payne for the torsional rigidity of $G$.
Keywords: stress function, torsional rigidity, Payne inequality, isoperimetric inequalities, isoperimetric monotonicity, symmetrization.
@article{IVM_2013_9_a9,
     author = {R. G. Salakhudinov},
     title = {Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--80},
     publisher = {mathdoc},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/}
}
TY  - JOUR
AU  - R. G. Salakhudinov
TI  - Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 75
EP  - 80
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/
LA  - ru
ID  - IVM_2013_9_a9
ER  - 
%0 Journal Article
%A R. G. Salakhudinov
%T Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 75-80
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/
%G ru
%F IVM_2013_9_a9
R. G. Salakhudinov. Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 75-80. http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/

[1] Bandle C., Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1980 | MR | Zbl

[2] Payne L. E., “Some isoperimetric inequalities in the torsion problem for multiply connected regions”, Studies in Mathematical analysis and Related Topics, Essays in honor of G. Pólya, Stanford University Press, Stanford, California, 1962, 270–280 | MR

[3] Hersch J., “Isoperimetric monotonicity: some properties and conjectures (connections between isoperimetric inequalities)”, SIAM Rev., 30:4 (1988), 551–577 | DOI | MR | Zbl

[4] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | DOI | MR | Zbl

[5] Salakhudinov R. G., “Izoperimetricheskaya monotonnost $l^p$-normy funktsii napryazheniya ploskoi odnosvyaznoi oblasti”, Izv. vuzov. Matem., 2010, no. 8, 59–68 | MR | Zbl