Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 75-80
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u(x,G)$ be the stress function of a multiply connected plane domain $G$. We construct new functionals depending on the stress function. The constructed functionals are isoperimetrically monotone with respect to the free parameter. A particular case of the proved result is the inequality of obtained by Payne for the torsional rigidity of $G$.
Keywords:
stress function, torsional rigidity, Payne inequality, isoperimetric inequalities, isoperimetric monotonicity, symmetrization.
@article{IVM_2013_9_a9,
author = {R. G. Salakhudinov},
title = {Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {75--80},
publisher = {mathdoc},
number = {9},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/}
}
TY - JOUR AU - R. G. Salakhudinov TI - Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 75 EP - 80 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/ LA - ru ID - IVM_2013_9_a9 ER -
%0 Journal Article %A R. G. Salakhudinov %T Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 75-80 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/ %G ru %F IVM_2013_9_a9
R. G. Salakhudinov. Isoperimetric inequalities for $L^p$-norms of the stress function of a~multiply connected plane domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 75-80. http://geodesic.mathdoc.fr/item/IVM_2013_9_a9/