Control of functional differential system in conditions of impulse disturbances
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 70-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a control problem for linear functional differential system with time delay of the general form. The purpose of controlling is prescribed with use of a finite set of linear functionals. The number of these functionals is independent of the dimension of the system. The system is acting under impulse disturbances which result in trajectory jumps with unknown previously instants of time and values. To solve the control problem, we propose a construction of control actions that contains both program and jumps-positional components. Conditions for the solvability of the stated control problem are formulated.
Keywords: functional differential equations, impulse systems, control problems.
@article{IVM_2013_9_a8,
     author = {V. P. Maksimov},
     title = {Control of functional differential system in conditions of impulse disturbances},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--74},
     publisher = {mathdoc},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a8/}
}
TY  - JOUR
AU  - V. P. Maksimov
TI  - Control of functional differential system in conditions of impulse disturbances
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 70
EP  - 74
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_9_a8/
LA  - ru
ID  - IVM_2013_9_a8
ER  - 
%0 Journal Article
%A V. P. Maksimov
%T Control of functional differential system in conditions of impulse disturbances
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 70-74
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_9_a8/
%G ru
%F IVM_2013_9_a8
V. P. Maksimov. Control of functional differential system in conditions of impulse disturbances. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 70-74. http://geodesic.mathdoc.fr/item/IVM_2013_9_a8/

[1] Kurzweil Ja., “Generalized ordinary differential equations and continuous dependence on a parameter”, Czechoslovak Math. J., 7(82) (1957), 418–449 | MR | Zbl

[2] Schwabik S., Tvrdý M., Vejvoda O., Differential and integral equations. Boundary value problems and adjoints, D. Reidel Publishing Co., Dordrecht–Boston, Mass.–London, 1979 | MR | Zbl

[3] Schwabik S., Generalized ordinary differential equations, World Scientific, River Edge, NJ, 1992 | MR | Zbl

[4] Ashordia M., “On the stability of solutions of the multipoint boundary value problem for the system of generalized ordinary differential equations”, Mem. Diff. Equat. Math. Phys., 6 (1995), 1–57 | MR | Zbl

[5] Sesekin A. N., Fetisova Yu. V., “Funktsionalno-differentsialnye uravneniya v prostranstve funktsii ogranichennoi variatsii”, Tr. In-ta matem. i mekhaniki UrO RAN, 15, no. 4, 2009, 226–233

[6] Fetisova Yu. V., Sesekin A. N., “Discontinuous solutions of differential equations with time delay”, WSEAS Trans. Syst., 4:5 (2005), 487–492 | MR

[7] Anokhin A. V., “O lineinykh impulsnykh sistemakh dlya funktsionalno-differentsialnykh uravnenii”, DAN SSSR, 286:5 (1986), 1037–1040 | MR | Zbl

[8] Maksimov V. P., Rumyantsev A. N., “Kraevye zadachi i zadachi impulsnogo upravleniya v ekonomicheskoi dinamike. Konstruktivnoe issledovanie”, Izv. vuzov. Matem., 1993, no. 5, 56–71 | MR | Zbl

[9] Maksimov V. P., “Problems of impulsive and mixed control for linear functional differential systems”, Izv. In-ta matem. i informatiki UdGU, 2006, no. 3(37), 87–88

[10] Islamov G. G., “O dopustimykh pomekhakh lineinykh upravlyaemykh sistem”, Izv. vuzov. Matem., 2002, no. 2, 37–40 | MR | Zbl

[11] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[12] Maksimov V. P., Rakhmatullina L. F., “O predstavlenii reshenii lineinogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 9:6 (1973), 1026–1036 | MR | Zbl

[13] Maksimov V. P., “O formule Koshi dlya funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 13:4 (1977), 601–606 | MR | Zbl

[14] Maksimov V. P., Chadov A. L., “Gibridnye modeli v zadachakh ekonomicheskoi dinamiki”, Vestn. Permsk. un-ta. Ekonomika, 2011, no. 2(9), 13–23