Topologies of uniform convergence. The property in the sense of Arens--Dugundji and the sequential property
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 45-58
Voir la notice de l'article provenant de la source Math-Net.Ru
This contribution investigates the properties of the topologies $\tau_\mathrm{sup}$ and $\tau_\mathrm{inf}$, which are, respectively, the supremum and the infimum of the family of all topologies of uniform convergence defined on the set $C(X,Y)$ of continuous maps into metrizable space $Y$. The main result of the research are necessary and sufficient conditions for properness and admissibility in the terms of Arens-Dugundji obtained for the topology $\tau_\mathrm{inf}$. The article introduces the notion of sequentially proper topology and establishes necessary and sufficient conditions for sequential properness of the topology $\tau_\mathrm{inf}$. It also considers a special case when the greatest proper topology and the greatest sequentially proper topology coincide on the set $C(X,Y)$.
Keywords:
mapping space, topology of uniform convergence, admissible topology, proper topology, sequentially proper topology.
@article{IVM_2013_9_a5,
author = {V. L. Timokhovich and D. S. Frolova},
title = {Topologies of uniform convergence. {The} property in the sense of {Arens--Dugundji} and the sequential property},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {45--58},
publisher = {mathdoc},
number = {9},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a5/}
}
TY - JOUR AU - V. L. Timokhovich AU - D. S. Frolova TI - Topologies of uniform convergence. The property in the sense of Arens--Dugundji and the sequential property JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 45 EP - 58 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_9_a5/ LA - ru ID - IVM_2013_9_a5 ER -
%0 Journal Article %A V. L. Timokhovich %A D. S. Frolova %T Topologies of uniform convergence. The property in the sense of Arens--Dugundji and the sequential property %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 45-58 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_9_a5/ %G ru %F IVM_2013_9_a5
V. L. Timokhovich; D. S. Frolova. Topologies of uniform convergence. The property in the sense of Arens--Dugundji and the sequential property. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 45-58. http://geodesic.mathdoc.fr/item/IVM_2013_9_a5/