Topologies of uniform convergence. The property in the sense of Arens--Dugundji and the sequential property
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 45-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

This contribution investigates the properties of the topologies $\tau_\mathrm{sup}$ and $\tau_\mathrm{inf}$, which are, respectively, the supremum and the infimum of the family of all topologies of uniform convergence defined on the set $C(X,Y)$ of continuous maps into metrizable space $Y$. The main result of the research are necessary and sufficient conditions for properness and admissibility in the terms of Arens-Dugundji obtained for the topology $\tau_\mathrm{inf}$. The article introduces the notion of sequentially proper topology and establishes necessary and sufficient conditions for sequential properness of the topology $\tau_\mathrm{inf}$. It also considers a special case when the greatest proper topology and the greatest sequentially proper topology coincide on the set $C(X,Y)$.
Keywords: mapping space, topology of uniform convergence, admissible topology, proper topology, sequentially proper topology.
@article{IVM_2013_9_a5,
     author = {V. L. Timokhovich and D. S. Frolova},
     title = {Topologies of uniform convergence. {The} property in the sense of {Arens--Dugundji} and the sequential property},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--58},
     publisher = {mathdoc},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a5/}
}
TY  - JOUR
AU  - V. L. Timokhovich
AU  - D. S. Frolova
TI  - Topologies of uniform convergence. The property in the sense of Arens--Dugundji and the sequential property
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 45
EP  - 58
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_9_a5/
LA  - ru
ID  - IVM_2013_9_a5
ER  - 
%0 Journal Article
%A V. L. Timokhovich
%A D. S. Frolova
%T Topologies of uniform convergence. The property in the sense of Arens--Dugundji and the sequential property
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 45-58
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_9_a5/
%G ru
%F IVM_2013_9_a5
V. L. Timokhovich; D. S. Frolova. Topologies of uniform convergence. The property in the sense of Arens--Dugundji and the sequential property. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 45-58. http://geodesic.mathdoc.fr/item/IVM_2013_9_a5/

[1] Timokhovich V. L., Frolova D. S., “O nekotorykh topologiyakh na mnozhestve otobrazhenii”, Vestn. BGU. Ser. 1, 2009, no. 3, 84–89 | MR | Zbl

[2] Kukrak G. O., Timokhovich V. L., “Nekotorye topologicheskie svoistva prostranstva otobrazhenii”, Vestn. BGU. Ser. 1, 2010, no. 1, 144–149 | MR | Zbl

[3] Frolova D. S., “O supremalnoi topologii prostranstva otobrazhenii”, Vestn. BGU. Ser. 1, 2011, no. 1, 116–117 | MR | Zbl

[4] Timokhovich V. L., Frolova D. S., “Ob infimalnoi topologii prostranstva otobrazhenii”, Vestn. BGU. Ser. 1, 2011, no. 2, 136–140 | MR | Zbl

[5] Timokhovich V. L., Frolova D. S., “Infimalnaya topologiya prostranstva otobrazhenii i otobrazhenie vychisleniya”, Vestn. BGU. Ser. 1, 2012, no. 1, 68–72

[6] Timokhovich V. L., Frolova D. S., “O sobstvennosti i dopustimosti v smysle Arensa–Dugundzhi infimuma topologii ravnomernoi skhodimosti”, Dokl. NAN Belarusi, 56:2 (2012), 22–26

[7] Timokhovich V. L., Frolova D. S., “O maksimalnoi sekventsialno sobstvennoi topologii na mnozhestve otobrazhenii”, Vestn. BGU. Ser. 1 (to appear)

[8] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[9] Birkhoff G., “On the combination of topologies”, Fund. Math., 26 (1936), 156–166

[10] Naimpally S., “Graph topology for function spaces”, Trans. Amer. Math. Soc., 123 (1966), 267–272 | DOI | MR | Zbl

[11] Di Maio G., Holá L'., Holý D., McCoy R. A., “Topologies on the space of continuous functions”, Topology Appl., 86:2 (1998), 105–122 | DOI | MR | Zbl

[12] Arens R., “A topology for spaces of transformations”, Ann. Math., 47:2 (1946), 480–495 | DOI | MR | Zbl

[13] Arens R., Dugundji J., “Topologies for function spaces”, Pacif. J. Math., 1 (1951), 5–31 | DOI | MR | Zbl

[14] Georgiou D. N., Iliadis S. D., Mynard F., “Function space topologies”, Open Problems in Topology, v. 2, ed. Elliott Pearl, Elsevier, 2007, 15–23 | DOI

[15] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[16] Georgiu D. N., Iliadis S. D., Papadopulos B. K., “Topologii prostranstv funktsii”, Zapiski nauchnykh seminarov POMI, 208, 1993, 82–97 | MR

[17] Escardo M., Lawson J., Simpson A., “Comparing cartesian closed categories of (core) compactly generated spaces”, Topology Appl., 143:1–3 (2004), 105–145 | DOI | MR | Zbl

[18] Hart K. P., Nagata J., Vaughan J. E., Encyclopedia of general topology, Elsevier, Amsterdam, 2004 | MR

[19] Wiscamb M. R., “The discrete countable chain condition”, Proc. Amer. Math. Soc., 23:3 (1969), 608–612 | DOI | MR | Zbl

[20] Mcintyre D. W., “Compact-calibres of regular and monotonically normal spaces”, Int. J. Math. Math. Sci., 29:4 (2002), 209–216 | DOI | MR | Zbl

[21] Matveev M. V., A survey on star-covering properties, Preprint 330, Topology Atlas, 1998

[22] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR

[23] Binz E., Continuous convergence on $C(X)$, Lecture Notes in Mathematics, 469, Springer-Verlag, 1975 | MR | Zbl

[24] Blair R. L., “Chain conditions in para-Lindelöf and related spaces”, Topology Proc., 11:2 (1986), 247–266 | MR | Zbl

[25] Navy C., Paralindelöf versus paracompact, Thesis, University of Wisconsin, 1981

[26] Fox R. H., “On topologies for function spaces”, Bull. Amer. Math. Soc., 51:6 (1945), 429–432 | DOI | MR | Zbl