Properties of point correspondences between three multidimensional surfaces of projective spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a sequence of fundamental geometrical objects of correspondences and find invariant normalizations of surfaces and tensors of correspondences. We establish a connection of correspondences under consideration with the theory of multidimensional $3$-webs.
Keywords: multidimensional surface, point correspondence, invariant normalization, multidimensional $3$-webs.
@article{IVM_2013_9_a0,
     author = {V. S. Bolodurin},
     title = {Properties of point correspondences between three multidimensional surfaces of projective spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a0/}
}
TY  - JOUR
AU  - V. S. Bolodurin
TI  - Properties of point correspondences between three multidimensional surfaces of projective spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 3
EP  - 15
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_9_a0/
LA  - ru
ID  - IVM_2013_9_a0
ER  - 
%0 Journal Article
%A V. S. Bolodurin
%T Properties of point correspondences between three multidimensional surfaces of projective spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 3-15
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_9_a0/
%G ru
%F IVM_2013_9_a0
V. S. Bolodurin. Properties of point correspondences between three multidimensional surfaces of projective spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2013_9_a0/