Properties of point correspondences between three multidimensional surfaces of projective spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a sequence of fundamental geometrical objects of correspondences and find invariant normalizations of surfaces and tensors of correspondences. We establish a connection of correspondences under consideration with the theory of multidimensional $3$-webs.
Keywords: multidimensional surface, point correspondence, invariant normalization, multidimensional $3$-webs.
@article{IVM_2013_9_a0,
     author = {V. S. Bolodurin},
     title = {Properties of point correspondences between three multidimensional surfaces of projective spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {9},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_9_a0/}
}
TY  - JOUR
AU  - V. S. Bolodurin
TI  - Properties of point correspondences between three multidimensional surfaces of projective spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 3
EP  - 15
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_9_a0/
LA  - ru
ID  - IVM_2013_9_a0
ER  - 
%0 Journal Article
%A V. S. Bolodurin
%T Properties of point correspondences between three multidimensional surfaces of projective spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 3-15
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_9_a0/
%G ru
%F IVM_2013_9_a0
V. S. Bolodurin. Properties of point correspondences between three multidimensional surfaces of projective spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2013), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2013_9_a0/

[1] Bolodurin V. S., “O geometrii tochechnykh sootvetstvii trekh konformnykh prostranstv”, Izv. vuzov. Matem., 2012, no. 8, 3–14 | Zbl

[2] Bolodurin V. S., “O proektivno-differentsialnykh svoistvakh tochechnykh sootvetstvii mezhdu tremya giperpoverkhnostyami”, Izv. vuzov. Matem., 2012, no. 12, 16–29 | Zbl

[3] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii. Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. Moskovsk. matem. o-va, 2, 1953, 275–382 | MR | Zbl

[4] Ostianu N. M., “O geometrii mnogomernoi poverkhnosti proektivnogo prostranstva”, Tr. geometr. semin., 1, VINITI, 1966, 239–263 | MR | Zbl

[5] Ryzhkov V. V., “Differentsialnaya geometriya tochechnykh sootvetstvii mezhdu dvumya prostranstvami”, Itogi nauki. Geometriya. 1963, Inst. nauch. inf. AN SSSR, 1965, 65–107 | MR

[6] Bolodurin V. S., “K invariantnoi teorii tochechnykh sootvetstvii trekh proektivnykh prostranstv”, Izv. vuzov. Matem., 1982, no. 5, 9–15 | MR | Zbl

[7] Sokolova T. A., “K voprosu o tochechnykh sootvetstviyakh trekh proektivnykh prostranstv”, Tr. geometr. semin., 4, VINITI, 1973, 269–283 | MR | Zbl

[8] Bolodurin V. S., “O tochechnykh sootvetstviyakh mezhdu mnogomernymi poverkhnostyami proektivnykh prostranstv”, Izv. vuzov. Matem., 1975, no. 3, 11–22 | MR | Zbl

[9] Akivis M. A., “O tri-tkanyakh mnogomernykh poverkhnostei”, Tr. geometr. semin., 2, VINITI, 1969, 7–31 | MR | Zbl