A nonlocal problem for a~mixed-type equation whose order degenerates along the line of change of type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2013), pp. 57-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mixed-type equation whose order degenerates along the line of change of type. For this equation we study the unique solvability of a nonlocal problem with Saigo operators in the boundary condition. We prove the uniqueness theorem under certain conditions (stated as inequalities) on known functions. To prove the existence of a solution to the problem, we equivalently reduce it to a singular integral equation with the Cauchy kernel. We establish a condition ensuring the existence of a regularizer which reduces the obtained equation to a Fredholm equation of the second kind, whose unique solvability follows from that of the problem.
Keywords: mixed-type equation, nonlocal problem, fractional integro-differentiation operators, singular integral equation with Cauchy kernel, Fredholm equation, regularizer, Dirichlet problem, Cauchy problem.
@article{IVM_2013_8_a5,
     author = {O. A. Repin and S. K. Kumykova},
     title = {A nonlocal problem for a~mixed-type equation whose order degenerates along the line of change of type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--65},
     publisher = {mathdoc},
     number = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_8_a5/}
}
TY  - JOUR
AU  - O. A. Repin
AU  - S. K. Kumykova
TI  - A nonlocal problem for a~mixed-type equation whose order degenerates along the line of change of type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 57
EP  - 65
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_8_a5/
LA  - ru
ID  - IVM_2013_8_a5
ER  - 
%0 Journal Article
%A O. A. Repin
%A S. K. Kumykova
%T A nonlocal problem for a~mixed-type equation whose order degenerates along the line of change of type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 57-65
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_8_a5/
%G ru
%F IVM_2013_8_a5
O. A. Repin; S. K. Kumykova. A nonlocal problem for a~mixed-type equation whose order degenerates along the line of change of type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2013), pp. 57-65. http://geodesic.mathdoc.fr/item/IVM_2013_8_a5/

[1] Saigo M., “A remark on integral operators involving the Gauss hypergeometric function”, Math. Rep. Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl

[2] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[3] Bitsadze A. V., “K teorii uravnenii smeshannogo tipa, poryadok kotorykh vyrozhdaetsya vdol linii izmeneniya tipa”, Sb. tr., posvyasch. 80-letiyu N. I. Muskhelishvili, Nauka, M., 1972, 48–52

[4] Kumykova S. K., “Zadacha so smescheniem dlya uravneniya smeshannogo tipa, poryadok kotorogo vyrozhdaetsya vdol linii izmeneniya tipa”, Tr. 7-i Vserossisk. nauchn. konf. “Matem. modelirov. i kraevye zadachi”, ch. 3, Samara, 2010, 147–149

[5] Repin O. A., Kraevye zadachi so smescheniem dlya uravnenii giperbolicheskogo i smeshannogo tipov, Izd-vo Saratov. un-ta, Saratov, 1992 | MR | Zbl

[6] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[7] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR | Zbl

[8] Manwell A. R., “On general conditions for the existence of certain solutions of the equations of plane transonic flow. I: The Dirichlet problem”, Arch. Rat. Mech. Anal., 12 (1963), 249–272 | DOI | MR | Zbl

[9] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[10] Trikomi F., O lineinykh uravneniyakh v chastnykh proizvodnykh vtorogo poryadka smeshannogo tipa, Per. s ital. F. I. Franklya, Gostekhteorizdat, M.–L., 1947