The stress state of a~plastic layer with a~variable yield strength under a~flat deformation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2013), pp. 34-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the stress state of a plastic layer with a variable yield strength in a strip under a flat deformation with a tensile load. We approximately calculate the first integrals of the system of plastic equilibrium equations, obtain an analog of the first Hencky theorem, and solve the conjugation problem for stresses on the contact boundary.
Keywords: stress state, inhomogeneous plastic layer, flat deformation, Hencky integrals.
@article{IVM_2013_8_a3,
     author = {V. L. Dil'man and T. V. Karpeta},
     title = {The stress state of a~plastic layer with a~variable yield strength under a~flat deformation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {34--43},
     publisher = {mathdoc},
     number = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_8_a3/}
}
TY  - JOUR
AU  - V. L. Dil'man
AU  - T. V. Karpeta
TI  - The stress state of a~plastic layer with a~variable yield strength under a~flat deformation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 34
EP  - 43
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_8_a3/
LA  - ru
ID  - IVM_2013_8_a3
ER  - 
%0 Journal Article
%A V. L. Dil'man
%A T. V. Karpeta
%T The stress state of a~plastic layer with a~variable yield strength under a~flat deformation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 34-43
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_8_a3/
%G ru
%F IVM_2013_8_a3
V. L. Dil'man; T. V. Karpeta. The stress state of a~plastic layer with a~variable yield strength under a~flat deformation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2013), pp. 34-43. http://geodesic.mathdoc.fr/item/IVM_2013_8_a3/

[1] Olshak V., Rykhlevskii Ya., Urbanovskii V., Teoriya plastichnosti neodnorodnykh tel, Mir, M., 1964

[2] Brovman M. Ya., “Raschet usilii pri plasticheskoi deformatsii s uchetom neravnomernogo raspredeleniya temperatury”, Kuznechno-shtampovoe proizvodstvo, 1962, no. 7, 5–8

[3] Dilman V. L., Ostsemin A. A., “O napryazhenno-deformirovannom sostoyanii pri rastyazhenii plasticheskogo sloya s dvumya osyami simmetrii”, Izv. RAN. MTT, 2001, no. 6, 115–124

[4] Dilman V. L., Ostsemin A. A., “Napryazhennoe sostoyanie i staticheskaya prochnost plastichnoi prosloiki pri ploskoi deformatsii”, Probl. mashinostroeniya i nadezhnosti mashin, 2005, no. 4, 38–48

[5] Prandtl L., “Beispiele der Anwendung des Hencky's Theorems zum Gleichgewicht der plastischen Körper”, Z. Angew. Math. Mech., 3:6 (1923), 401–406 | DOI | Zbl

[6] Dilman V. L., Ostsemin A. A., “Napryazhennoe sostoyanie plasticheskogo sloya s peremennoi prochnostyu po tolschine”, Izv. RAN. MTT, 2000, no. 1, 141–148

[7] Dilman V. L., “Plasticheskaya neustoichivost tonkostennykh tsilindricheskikh obolochek”, Izv. RAN. MTT, 2005, no. 4, 165–175

[8] Hencky H., “Über einige statisch bestimmte Fälle des Gleichgewichts in plastischen Körpern”, Z. Angew. Math. Mech., 3 (1923), 241–251 | DOI | Zbl