On the Fourier coefficients of functions of bounded variation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2013), pp. 14-23
Voir la notice de l'article provenant de la source Math-Net.Ru
We notice that the Fourier coefficients of functions with bounded variation $V(0,1)$ with respect to general orthonormal systems (GONS) have no definite order of vanishing. In this connection we study the problem: which requirements to the GONS ensure that the Fourier coefficients of a function from $V(0,1)$ satisfy the inequality which holds for classical systems (trigonometric, Walsh, or Haar ones). In the present paper we study this problem and related issues.
Keywords:
Fourier series, trigonometric system, Walsh system, Haar system.
Mots-clés : Fourier coefficients
Mots-clés : Fourier coefficients
@article{IVM_2013_8_a1,
author = {L. D. Gogoladze and V. Sh. Tsagareishvili},
title = {On the {Fourier} coefficients of functions of bounded variation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {14--23},
publisher = {mathdoc},
number = {8},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_8_a1/}
}
TY - JOUR AU - L. D. Gogoladze AU - V. Sh. Tsagareishvili TI - On the Fourier coefficients of functions of bounded variation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 14 EP - 23 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_8_a1/ LA - ru ID - IVM_2013_8_a1 ER -
L. D. Gogoladze; V. Sh. Tsagareishvili. On the Fourier coefficients of functions of bounded variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2013), pp. 14-23. http://geodesic.mathdoc.fr/item/IVM_2013_8_a1/