Iterative processes of the second order monotone inclusions in a~Hilbert space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2013), pp. 52-61
Voir la notice de l'article provenant de la source Math-Net.Ru
We study equations with multiple-valued operators in a Hilbert space. We understand their solutions in the sense of inclusion. We reduce such equations to mixed variational inequalities or to equations with single-valued operators. For constructed problems we propose implicit iterative processes of the second order and establish sufficient conditions for their strong convergence.
Keywords:
monotone operator, convex functional, inversely strongly monotone operator, resolvent, mixed variational inequality, iterative method.
@article{IVM_2013_7_a4,
author = {I. P. Ryazantseva},
title = {Iterative processes of the second order monotone inclusions in {a~Hilbert} space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {52--61},
publisher = {mathdoc},
number = {7},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_7_a4/}
}
I. P. Ryazantseva. Iterative processes of the second order monotone inclusions in a~Hilbert space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2013), pp. 52-61. http://geodesic.mathdoc.fr/item/IVM_2013_7_a4/