Two-point boundary value problem for gyroscopic systems in some Lorentzian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2013), pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate dynamics of gyroscopic systems of a relativistic type with multivalued action functionals. We suppose that configuration Lorentzian manifolds have the structure of the twisted product. Earlier solvability of the two-point boundary value problem for such systems was proved only in the situation when the Lorentzian distance from the initial point to the final point was limited. In this work we obtain a new theorem of the existence. According to this theorem the specified distance to achievable points may be arbitrary large. The result is applied to the dynamics of a charged test particle in the external space-time of the Reissner–Nordström black hole.
Keywords: Lorentzian manifold, Riemannian manifold, gyroscopic system with multivalued action functional, two-point boundary value problem, Reissner–Nordström space-time.
@article{IVM_2013_6_a5,
     author = {E. I. Yakovlev},
     title = {Two-point boundary value problem for gyroscopic systems in some {Lorentzian} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--69},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_6_a5/}
}
TY  - JOUR
AU  - E. I. Yakovlev
TI  - Two-point boundary value problem for gyroscopic systems in some Lorentzian manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 60
EP  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_6_a5/
LA  - ru
ID  - IVM_2013_6_a5
ER  - 
%0 Journal Article
%A E. I. Yakovlev
%T Two-point boundary value problem for gyroscopic systems in some Lorentzian manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 60-69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_6_a5/
%G ru
%F IVM_2013_6_a5
E. I. Yakovlev. Two-point boundary value problem for gyroscopic systems in some Lorentzian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2013), pp. 60-69. http://geodesic.mathdoc.fr/item/IVM_2013_6_a5/

[1] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985 | MR

[2] Yakovlev E. I., “Dvukhtochechnye kraevye zadachi v relyativistskoi dinamike”, Matem. zametki, 59:3 (1996), 437–449 | DOI | MR | Zbl

[3] Yakovlev E. I., “O suschestvovanii reshenii dvukhtochechnykh kraevykh zadach dlya giroskopicheskikh sistem relyativistskogo tipa”, Algebra i analiz, 9:2 (1997), 256–271 | MR

[4] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[5] Yakovlev E. I., “Rassloeniya i geometricheskie struktury, assotsiirovannye s giroskopicheskimi sistemami”, Sovremen. matem. Fundament. napravleniya, 22, 2007, 100–126 | MR | Zbl

[6] Novikov I. D., Frolov V. P., Fizika chernykh dyr, Nauka, M., 1986

[7] Ershov Yu. V., Yakovlev E. I., “Obobschennye funktsii rasstoyaniya rimanovykh mnogoobrazii i dvizheniya giroskopicheskikh sistem”, Sib. matem. zhurn., 49:1 (2008), 87–100 | MR | Zbl

[8] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967 | MR

[9] Yakovlev E. I., “Nekotorye dvukhtochechnye kraevye zadachi dlya differentsialnykh uravnenii 2-go poryadka s predelnymi pulverizatsiyami”, Differents. i integral. uravneniya, Mezhvuz. sb., GGU, Gorkii, 1988, 19–22 | MR