Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_6_a4, author = {A. V. Fadeev}, title = {Solution of a~problem of $\mathbb R$-linear conjugation for confocal elliptical annulus in the class of piecewise-meromorphic functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {45--59}, publisher = {mathdoc}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_6_a4/} }
TY - JOUR AU - A. V. Fadeev TI - Solution of a~problem of $\mathbb R$-linear conjugation for confocal elliptical annulus in the class of piecewise-meromorphic functions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 45 EP - 59 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_6_a4/ LA - ru ID - IVM_2013_6_a4 ER -
%0 Journal Article %A A. V. Fadeev %T Solution of a~problem of $\mathbb R$-linear conjugation for confocal elliptical annulus in the class of piecewise-meromorphic functions %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 45-59 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_6_a4/ %G ru %F IVM_2013_6_a4
A. V. Fadeev. Solution of a~problem of $\mathbb R$-linear conjugation for confocal elliptical annulus in the class of piecewise-meromorphic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2013), pp. 45-59. http://geodesic.mathdoc.fr/item/IVM_2013_6_a4/
[1] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1968
[2] Golubeva O. V., Shpilevoi A. Ya., “O ploskoi filtratsii v sredakh s preryvno izmenyayuscheisya pronitsaemostyu vdol krivykh vtorogo poryadka”, Izv. AN SSSR. MZhG, 1967, no. 2, 174–179
[3] Obdam A. N. V., Veiling E. J. M., “Elliptical inhomogeneities in groundwater flow – an analytical description”, J. Hydrology, 95 (1987), 87–96 | DOI
[4] Obnosov Yu. V., Fadeev A. V., “A generalized Milne-Thomson theorem for the case of an elliptical inclusion”, Euro. J. Appl. Math., 23:4 (2012), 469–484 | DOI | MR | Zbl
[5] Obnosov Yu. V., “A generalized Milne-Thomson theorem”, Appl. Math. Lett., 19 (2006), 581–586 | DOI | MR | Zbl
[6] Obnosov Yu. V., “A generalized Milne-Thomson theorem for the case of parabolic inclusion”, Appl. Math. Modell., 33 (2009), 1970–1981 | DOI | MR | Zbl
[7] Obnosov Yu. V., Kraevye zadachi teorii geterogennykh sred. Mnogofaznye sredy, razdelennye krivymi vtorogo poryadka, Izd-vo Kazan. un-ta, 2009
[8] Emets Yu. P., Kraevye zadachi elektrodinamiki anizotropno provodyaschikh sred, Nauk. dumka, Kiev, 1987