Solution of a~problem of $\mathbb R$-linear conjugation for confocal elliptical annulus in the class of piecewise-meromorphic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2013), pp. 45-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of disturbance of a complex potential after insertion of a foreign inclusion in the form of two-phase confocal elliptical annulus into a homogeneous medium. We investigate the cases of an arbitrary distribution of singularities.
Keywords: $\mathbb R$-linear conjugation problem, heterogeneous medium, analytic functions, Zhukovskii function.
Mots-clés : confocal elliptical annulus
@article{IVM_2013_6_a4,
     author = {A. V. Fadeev},
     title = {Solution of a~problem of $\mathbb R$-linear conjugation for confocal elliptical annulus in the class of piecewise-meromorphic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--59},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_6_a4/}
}
TY  - JOUR
AU  - A. V. Fadeev
TI  - Solution of a~problem of $\mathbb R$-linear conjugation for confocal elliptical annulus in the class of piecewise-meromorphic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 45
EP  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_6_a4/
LA  - ru
ID  - IVM_2013_6_a4
ER  - 
%0 Journal Article
%A A. V. Fadeev
%T Solution of a~problem of $\mathbb R$-linear conjugation for confocal elliptical annulus in the class of piecewise-meromorphic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 45-59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_6_a4/
%G ru
%F IVM_2013_6_a4
A. V. Fadeev. Solution of a~problem of $\mathbb R$-linear conjugation for confocal elliptical annulus in the class of piecewise-meromorphic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2013), pp. 45-59. http://geodesic.mathdoc.fr/item/IVM_2013_6_a4/

[1] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1968

[2] Golubeva O. V., Shpilevoi A. Ya., “O ploskoi filtratsii v sredakh s preryvno izmenyayuscheisya pronitsaemostyu vdol krivykh vtorogo poryadka”, Izv. AN SSSR. MZhG, 1967, no. 2, 174–179

[3] Obdam A. N. V., Veiling E. J. M., “Elliptical inhomogeneities in groundwater flow – an analytical description”, J. Hydrology, 95 (1987), 87–96 | DOI

[4] Obnosov Yu. V., Fadeev A. V., “A generalized Milne-Thomson theorem for the case of an elliptical inclusion”, Euro. J. Appl. Math., 23:4 (2012), 469–484 | DOI | MR | Zbl

[5] Obnosov Yu. V., “A generalized Milne-Thomson theorem”, Appl. Math. Lett., 19 (2006), 581–586 | DOI | MR | Zbl

[6] Obnosov Yu. V., “A generalized Milne-Thomson theorem for the case of parabolic inclusion”, Appl. Math. Modell., 33 (2009), 1970–1981 | DOI | MR | Zbl

[7] Obnosov Yu. V., Kraevye zadachi teorii geterogennykh sred. Mnogofaznye sredy, razdelennye krivymi vtorogo poryadka, Izd-vo Kazan. un-ta, 2009

[8] Emets Yu. P., Kraevye zadachi elektrodinamiki anizotropno provodyaschikh sred, Nauk. dumka, Kiev, 1987