Stability of solutions to differential equations with several variable delays.~I
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2013), pp. 25-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of scalar linear differential equations with several variable delays and constant coefficients. A family of equations of the class is defined by coefficients and maximum admissible values of delays. We obtain conditions that are necessary and sufficient for the stability of solutions to all equations of the family. It is ascertained that the conditions are determined entirely by properties of the solution to the initial problem for an autonomous equation that belongs to the family. Some alternatives of required conditions are obtained in the form of estimates for solutions to autonomous equations in a finite interval.
Keywords: functional differential equation, varying delay, several delays, stability, the Cauchy function.
@article{IVM_2013_6_a2,
     author = {V. V. Malygina and K. M. Chudinov},
     title = {Stability of solutions to differential equations with several variable {delays.~I}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--36},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_6_a2/}
}
TY  - JOUR
AU  - V. V. Malygina
AU  - K. M. Chudinov
TI  - Stability of solutions to differential equations with several variable delays.~I
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 25
EP  - 36
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_6_a2/
LA  - ru
ID  - IVM_2013_6_a2
ER  - 
%0 Journal Article
%A V. V. Malygina
%A K. M. Chudinov
%T Stability of solutions to differential equations with several variable delays.~I
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 25-36
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_6_a2/
%G ru
%F IVM_2013_6_a2
V. V. Malygina; K. M. Chudinov. Stability of solutions to differential equations with several variable delays.~I. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2013), pp. 25-36. http://geodesic.mathdoc.fr/item/IVM_2013_6_a2/

[1] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[2] Zverkin A. M., “K teorii lineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami”, DAN SSSR, 128:5 (1959), 882–885 | MR | Zbl

[3] Shimanov S. N., Dolgii Yu. F., “O suschestvovanii zony ustoichivosti dlya odnogo uravneniya s zapazdyvaniem”, Ustoichivost i nelineinye kolebaniya, Sverdlovsk, 1989, 11–18

[4] Bashkirov A. I., “Ustoichivost uravnenii zapazdyvayuschego tipa s periodicheskimi parametrami”, Differents. uravneniya, 22:11 (1986), 1994–1997 | MR | Zbl

[5] Myshkis A. D., “O resheniyakh lineinykh odnorodnykh differentsialnykh uravnenii pervogo poryadka ustoichivogo tipa s zapazdyvayuschim argumentom”, Matem. sb., 28(70):3 (1951), 641–658 | MR | Zbl

[6] Yorke J. A., “Asymptotic stability for one dimensional differential-delay equations”, J. Different. Equat., 7 (1970), 189–202 | DOI | MR | Zbl

[7] Yoneyama T., “On the $3/2$ stability theorem for one dimensional delay-differential equations”, J. Math. Anal. Appl., 125:1 (1987), 161–173 | DOI | MR | Zbl

[8] Malygina V. V., “Nekotorye priznaki ustoichivosti uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 28:10 (1992), 1716–1723 | MR | Zbl

[9] Amemiya T., “On the delay-independent stability of a delayed differential equation of $1^\mathrm{st}$ order”, J. Math. Anal. Appl., 142:1 (1989), 13–25 | DOI | MR | Zbl

[10] Malygina V. V., “Ob ustoichivosti reshenii nekotorykh lineinykh differentsialnykh uravnenii s posledeistviem”, Izv. vuzov. Matem., 1993, no. 5, 72–85 | MR | Zbl

[11] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR | Zbl

[12] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[13] Maksimov V. P., Rakhmatullina L. F., “O predstavlenii resheniya lineinogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 9:6 (1973), 1026–1036 | MR | Zbl

[14] Azbelev N. V., Simonov P. M., “Ustoichivost uravnenii s zapazdyayuschim argumentom”, Izv. vuzov. Matem., 1997, no. 6, 3–16 | MR | Zbl

[15] Azbelev N. V., Simonov P. M., Ustoichivost uravnenii s obyknovennymi proizvodnymi, Izd-vo Permsk. un-ta, Perm, 2001

[16] Azbelev N. V., Rakhmatullina L. F., “Zadacha Koshi dlya differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 8:9 (1972), 1542–1552 | MR | Zbl