Absolute continuity of quasiconformal map of Carnot--Carath\'eodory spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2013), pp. 64-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a quasiconformal mapping of Carnot–Carathéodory spaces is absolutely continuous not only on integral curves of horizontal vector fields but also on integral curves of vector fields whose degree differs from one.
Keywords: Carnot–Carathéodory space, quasiconformal mapping, absolute continuity.
@article{IVM_2013_5_a6,
     author = {M. V. Tryamkin},
     title = {Absolute continuity of quasiconformal map of {Carnot--Carath\'eodory} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--68},
     publisher = {mathdoc},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_5_a6/}
}
TY  - JOUR
AU  - M. V. Tryamkin
TI  - Absolute continuity of quasiconformal map of Carnot--Carath\'eodory spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 64
EP  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_5_a6/
LA  - ru
ID  - IVM_2013_5_a6
ER  - 
%0 Journal Article
%A M. V. Tryamkin
%T Absolute continuity of quasiconformal map of Carnot--Carath\'eodory spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 64-68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_5_a6/
%G ru
%F IVM_2013_5_a6
M. V. Tryamkin. Absolute continuity of quasiconformal map of Carnot--Carath\'eodory spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2013), pp. 64-68. http://geodesic.mathdoc.fr/item/IVM_2013_5_a6/

[1] Menchoff D. E., “Sur une généralization d'un théorème de M. H. Bohr”, Matem. sb., 2(44):2 (1937), 339–356 | Zbl

[2] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl

[3] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Springer, Berlin etc., 1971 | MR

[4] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[5] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symmétriques de rang un”, Ann. Math., 129:1 (1989), 1–60 | DOI | MR | Zbl

[6] Mostow G. D., Strong rigidity of locally symmetric spaces, Tokyo Univer. Press, Princeton, 1973 | MR | Zbl

[7] Koranyi A., Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group”, Adv. Math., 111:1 (1995), 1–87 | DOI | MR | Zbl

[8] Vodopyanov S. K., Greshnov A. V., “Analiticheskie svoistva kvazikonformnykh otobrazhenii na gruppakh Karno”, Sib. matem. zhurn., 36:6 (1995), 1317–1327 | MR | Zbl

[9] Margulis G. A., Mostow G. D., “The differential of quasiconformal mapping of a Carnot–Carathéodory space”, Geom. Funct. Anal., 5:2 (1995), 402–433 | DOI | MR | Zbl

[10] Basalaev S. G., Vodopyanov S. K., “Approximate differentiability of mappings of Carnot–Carathéodory spaces”, Eurasian Math. J. (to appear)

[11] Mitchell J., “On Carnot–Carathéodory metrics”, J. Differ. Geom., 21:1 (1985), 35–45 | MR | Zbl

[12] Heinonen J., Koskela P., “Quasiconformal maps in metric spaces with controlled geometry”, Acta Math., 181:1 (1998), 1–61 | DOI | MR | Zbl

[13] Heinonen J., Koskela P., “Definitions of quasiconformality”, Invent. Math., 120:1 (1995), 61–70 | DOI | MR

[14] Basalaev S. G., “Neravenstvo Puankare dlya $C^1$-gladkikh vektornykh polei”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 45, KFU, Kazan, 2012, 20–23