A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2013), pp. 61-63
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a sharp error estimate of the best approximation by algebraic polynomials in the Lebesgue space $L_2(-1,1)$ with the weight $1-x^2$ of degree $\lambda>-1$.
Keywords:
best approximation, sharp estimate, weighted space.
@article{IVM_2013_5_a5,
author = {R. Z. Dautov},
title = {A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {61--63},
publisher = {mathdoc},
number = {5},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_5_a5/}
}
TY - JOUR AU - R. Z. Dautov TI - A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 61 EP - 63 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_5_a5/ LA - ru ID - IVM_2013_5_a5 ER -
%0 Journal Article %A R. Z. Dautov %T A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 61-63 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_5_a5/ %G ru %F IVM_2013_5_a5
R. Z. Dautov. A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2013), pp. 61-63. http://geodesic.mathdoc.fr/item/IVM_2013_5_a5/