A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2013), pp. 61-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a sharp error estimate of the best approximation by algebraic polynomials in the Lebesgue space $L_2(-1,1)$ with the weight $1-x^2$ of degree $\lambda>-1$.
Keywords: best approximation, sharp estimate, weighted space.
@article{IVM_2013_5_a5,
     author = {R. Z. Dautov},
     title = {A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--63},
     publisher = {mathdoc},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_5_a5/}
}
TY  - JOUR
AU  - R. Z. Dautov
TI  - A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 61
EP  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_5_a5/
LA  - ru
ID  - IVM_2013_5_a5
ER  - 
%0 Journal Article
%A R. Z. Dautov
%T A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 61-63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_5_a5/
%G ru
%F IVM_2013_5_a5
R. Z. Dautov. A sharp error estimate of the best approximation by algebraic polynomials in the weighted space $L_2(-1,1)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2013), pp. 61-63. http://geodesic.mathdoc.fr/item/IVM_2013_5_a5/

[1] Schwab C., $p$- and $hp$-finite element methods: theory and applications to solid and fluid mechanics, Oxford Univer. Press, Oxford, 1999 | MR | Zbl

[2] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR