Approximation of differentiation operator in the space $L_2$ on semiaxis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2013), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an upper bound for the error of the best approximation of the first order differentiation operator by linear bounded operators on the set of twice differentiable functions in the space $L_2$ on the half-line. This upper bound is close to a known lower bound and improves the previously known upper bound due to E. E. Berdysheva. We use a specific operator that is introduced and studied in the paper.
Keywords: Stechkin problem, optimal recovery, differential operator, half-line.
@article{IVM_2013_5_a0,
     author = {V. V. Arestov and M. A. Filatova},
     title = {Approximation of differentiation operator in the space $L_2$ on semiaxis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_5_a0/}
}
TY  - JOUR
AU  - V. V. Arestov
AU  - M. A. Filatova
TI  - Approximation of differentiation operator in the space $L_2$ on semiaxis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 3
EP  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_5_a0/
LA  - ru
ID  - IVM_2013_5_a0
ER  - 
%0 Journal Article
%A V. V. Arestov
%A M. A. Filatova
%T Approximation of differentiation operator in the space $L_2$ on semiaxis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 3-12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_5_a0/
%G ru
%F IVM_2013_5_a0
V. V. Arestov; M. A. Filatova. Approximation of differentiation operator in the space $L_2$ on semiaxis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2013), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2013_5_a0/

[1] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | MR | Zbl

[2] Arestov V. V., Gabushin VN., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matem., 1995, no. 11, 42–68 | MR | Zbl

[3] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | DOI | MR | Zbl

[4] Babenko V. F., Korneichuk N. P., Kofanov V. A., Pichugov S. A., Neravenstva dlya proizvodnykh i ikh prilozheniya, Nauk. dumka, Kiev, 2003

[5] Subbotin Yu. N., Taikov L. V., “Nailuchshee priblizhenie operatora differentsirovaniya v prostranstve $L_2$”, Matem. zametki, 3:2 (1968), 157–164 | MR | Zbl

[6] Khardi G., Littlvud Dzh., Polia G., Neravenstva, In. lit., M., 1948

[7] Kato T., “On an inequality of Hardy, Littlewood, and Pólya”, Adv. Math., 7:3 (1971), 217–218 | DOI | MR | Zbl

[8] Everitt W. D., Zettl A., “On a class of integral inequalities”, J. London Math. Soc., 17 (1978), 291–303 | DOI | MR | Zbl

[9] Kwong M. K., Zettl A., Norm inequalities for derivatives and differences, Lecture Notes in Mathematics, 1536, Springer-Verlag, Berlin, 1992 | MR | Zbl

[10] Kuptsov N. P., “Kolmogorovskie otsenki dlya proizvodnykh v $L_2[0,\infty)$”, Tr. MIAN SSSR, 138, 1975, 94–117 | MR | Zbl

[11] Buslaev A. P., “Ob odnoi ekstremalnoi zadache, svyazannoi s neravenstvami dlya proizvodnykh”, Vestnik Moskovsk. un-ta, Ser. matem., mekhan., 1978, no. 3, 67–77 | MR | Zbl

[12] Rublev A. L., “O priblizhenii operatora diferentsirovaniya na klasse dvazhdy differentsiruemykh funktsii v prostranstve $L_2(0,\infty)$”, Tr. in-ta. matem., mekhan. UrO RAN, 4, 1996, 162–170 | MR | Zbl

[13] Berdysheva E. E., “On the best approximation of the differentiation operator in $L_2(0,\infty)$”, East J. Approx., 2:3 (1996), 281–287 | MR | Zbl

[14] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR