Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_4_a3, author = {M. Yu. Kokurin}, title = {Reduction of variational inequalities with irregular operators on a~ball to regular operator equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {32--41}, publisher = {mathdoc}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_4_a3/} }
TY - JOUR AU - M. Yu. Kokurin TI - Reduction of variational inequalities with irregular operators on a~ball to regular operator equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 32 EP - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_4_a3/ LA - ru ID - IVM_2013_4_a3 ER -
M. Yu. Kokurin. Reduction of variational inequalities with irregular operators on a~ball to regular operator equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2013), pp. 32-41. http://geodesic.mathdoc.fr/item/IVM_2013_4_a3/
[1] Bakushinskii A. B., Kokurin M. Yu., Yusupova N. A., “Neobkhodimye usloviya skhodimosti iteratsionnykh metodov resheniya nelineinykh operatornykh uravnenii bez svoistva regulyarnosti”, Zhurn. vychisl. matem. i matem. fiz., 40:7 (2000), 986–996 | MR | Zbl
[2] Kokurin M. Yu., “Ob organizatsii globalnogo poiska pri realizatsii skhemy Tikhonova”, Izv. vuzov. Matem., 2010, no. 12, 20–31 | MR | Zbl
[3] Kokurin M. Yu., “On sequential minimization of Tikhonov functionals in ill-posed problems with a priori information on solutions”, J. Inverse and Ill-posed Problems, 18:9 (2011), 1031–1050 | MR
[4] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002
[5] Vasilev F. P., Ishmukhametov A. Z., Potapov M. M., Obobschennyi metod momentov v zadachakh optimalnogo upravleniya, Izd-vo MGU, M., 1989 | MR
[6] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR
[7] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR
[8] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[9] Izmailov A. F., Tretyakov A. A., 2-regulyarnye metody resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR
[10] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1975 | MR | Zbl
[11] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya neregulyarnykh uravnenii, LENAND, M., 2006
[12] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[13] Polyak B. T., “Lokalnoe programmirovanie”, Zhurn. vychisl. matem. i matem. fiz., 41:9 (2001), 1324–1331 | MR | Zbl
[14] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR
[15] Dymarskii Ya. M., “Metod mnogoobrazii v teorii sobstvennykh vektorov nelineinykh operatorov”, Sovremennaya matematika. Fundamentalnye napravleniya, 24, 2007, 3–159 | MR | Zbl
[16] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR