Attractor decomposition for closed binary relations on compact Hausdorff spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2013), pp. 19-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the main methods for studying iterated function systems is the attractor decomposition by a code map. In this paper we obtain an analog of such a decomposition of attractors for closed binary relations on compact Hausdorff spaces.
Keywords: binary relation, attractor, iterated function system.
@article{IVM_2013_4_a2,
     author = {K. B. Igudesman},
     title = {Attractor decomposition for closed binary relations on compact {Hausdorff} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--31},
     publisher = {mathdoc},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_4_a2/}
}
TY  - JOUR
AU  - K. B. Igudesman
TI  - Attractor decomposition for closed binary relations on compact Hausdorff spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 19
EP  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_4_a2/
LA  - ru
ID  - IVM_2013_4_a2
ER  - 
%0 Journal Article
%A K. B. Igudesman
%T Attractor decomposition for closed binary relations on compact Hausdorff spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 19-31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_4_a2/
%G ru
%F IVM_2013_4_a2
K. B. Igudesman. Attractor decomposition for closed binary relations on compact Hausdorff spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2013), pp. 19-31. http://geodesic.mathdoc.fr/item/IVM_2013_4_a2/

[1] Hutchinson J., “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[2] Barnsley M. F., Superfractals, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[3] McGehee R., “Attractors for closed relations on compact Hausdorff spaces”, Indiana Univ. Math. J., 41:4 (1992), 1165–1209 | DOI | MR | Zbl

[4] McGehee R. P., Wiandt T., “Conley decomposition for closed relations”, J. Different. Equat. Appl., 12:1 (2006), 1–47 | DOI | MR | Zbl

[5] Biserov D. S., Igudesman K. B., “Matritsy nad polukoltsom binarnykh otnoshenii i $V$-komponentnye fraktaly”, Izv. vuzov. Matem., 2011, no. 5, 75–79 | MR | Zbl

[6] Barnsley M. F., Demko S., “Iterated function systems and the global construction of fractals”, Proc. Roy. Soc. Lond. Ser. A, 399 (1985), 243–275 | DOI | MR | Zbl

[7] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser Boston Inc., Boston, 2009 | MR | Zbl

[8] Engelking R., General topology, Heldermann Verlag, Berlin, 1989 | MR | Zbl

[9] Barnsley M. F., Fractals everywhere, Academic Press Inc., Boston, 1988 | MR | Zbl

[10] Atsushi Kameyama, “Distances on topological self-similar sets and the kneading determinants”, J. Math. Kyoto Univ., 40:4 (2000), 601–672 | MR | Zbl