Reconstruction of a~pure state from incomplete information on its optical tomogram
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 62-67
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of reconstructing a state (i.e., a positive unit-trace operator) from incomplete information on its optical tomogram. In the case, when a (pure) state is determined by a function representing a linear combination of $N$ ground and excited states of a quantum oscillator, we propose a technique for reconstructing this state from $N$ values of its tomogram. For $N=3$ we find an exact solution to the problem under consideration.
Keywords:
state, optical tomogram, eigenfunctions of integral operator.
@article{IVM_2013_3_a6,
author = {G. G. Amosov and A. I. Dnestryan},
title = {Reconstruction of a~pure state from incomplete information on its optical tomogram},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {62--67},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_3_a6/}
}
TY - JOUR AU - G. G. Amosov AU - A. I. Dnestryan TI - Reconstruction of a~pure state from incomplete information on its optical tomogram JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 62 EP - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_3_a6/ LA - ru ID - IVM_2013_3_a6 ER -
G. G. Amosov; A. I. Dnestryan. Reconstruction of a~pure state from incomplete information on its optical tomogram. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 62-67. http://geodesic.mathdoc.fr/item/IVM_2013_3_a6/