Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_3_a6, author = {G. G. Amosov and A. I. Dnestryan}, title = {Reconstruction of a~pure state from incomplete information on its optical tomogram}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {62--67}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_3_a6/} }
TY - JOUR AU - G. G. Amosov AU - A. I. Dnestryan TI - Reconstruction of a~pure state from incomplete information on its optical tomogram JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 62 EP - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_3_a6/ LA - ru ID - IVM_2013_3_a6 ER -
G. G. Amosov; A. I. Dnestryan. Reconstruction of a~pure state from incomplete information on its optical tomogram. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 62-67. http://geodesic.mathdoc.fr/item/IVM_2013_3_a6/
[1] Mancini S., Man'ko V. I., Tombesi P., “Wigner function and probability distribution for shifted and squeezed quadratures”, Quantum Semiclass. Opt., 7:4 (1995), 615–624 | DOI | MR
[2] Pauli W., “Die allgemeinen Prinzipien der Wellenmechanik”, Handbuch der Physik, 24 (1933), 83–272 | Zbl
[3] Orlowski A., Paul H., “Phase retrieval in quantum mechanics”, Physical Review A, 50:2 (1994), 921–924 | MR
[4] Leonhardt U., Munroe M., “Number of phases required to determine a quantum state in optical homodyne tomography”, Physical Review A, 54:4 (1996), 3682–3684 | DOI | MR
[5] Amosov G. G., Mancini S., Man'ko V. I., “On the information completeness of quantum tomograms”, Phys. Lett. A, 372:16 (2008), 2820–2824 | DOI | MR | Zbl
[6] Namias V., “The fractional order Fourier transform and its application to quantum mechanics”, J. Inst. Math. Appl., 25:3 (1980), 241–265 | DOI | MR | Zbl
[7] Amosov G. G., Dnestryan A. I., “O spektre semeistva integralnykh operatorov, opredelyayuschikh simplekticheskuyu kvantovuyu tomogrammu”, Tr. MFTI, 3:1 (2011), 5–9