Some fixed point theorems for weakly $T$-Chatterjea and weakly $T$-Kannan-contractive mappings in complete metric spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 47-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we introduce the notions of generalized weakly $T$-Chatterjea-contractive and generalized weakly $T$-Kannan-contractive maps. For these classes of maps we obtain sufficient conditions for the existence of a unique fixed point in a complete metric space.
Keywords: fixed point, complete metric space, weak $C$-contraction, altering distance function.
@article{IVM_2013_3_a4,
     author = {A. Razani and V. Parvaneh},
     title = {Some fixed point theorems for weakly $T${-Chatterjea} and weakly $T${-Kannan-contractive} mappings in complete metric spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {47--55},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_3_a4/}
}
TY  - JOUR
AU  - A. Razani
AU  - V. Parvaneh
TI  - Some fixed point theorems for weakly $T$-Chatterjea and weakly $T$-Kannan-contractive mappings in complete metric spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 47
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_3_a4/
LA  - ru
ID  - IVM_2013_3_a4
ER  - 
%0 Journal Article
%A A. Razani
%A V. Parvaneh
%T Some fixed point theorems for weakly $T$-Chatterjea and weakly $T$-Kannan-contractive mappings in complete metric spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 47-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_3_a4/
%G ru
%F IVM_2013_3_a4
A. Razani; V. Parvaneh. Some fixed point theorems for weakly $T$-Chatterjea and weakly $T$-Kannan-contractive mappings in complete metric spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 47-55. http://geodesic.mathdoc.fr/item/IVM_2013_3_a4/

[1] Banach S., “Sur les operations dans les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3 (1922), 133–181 | Zbl

[2] Kannan R., “Some results on fixed points”, Bull. Calc. Math. Soc., 60:1 (1968), 71–76 | MR | Zbl

[3] Chatterjea S. K., “Fixed point theorems”, C. R. Acad. Bulgare Sci., 25:6 (1972), 727–730 | MR | Zbl

[4] Choudhury B. S., “Unique fixed point theorem for weak $C$-contractive mappings”, Kathmandu Univ. J. Sci. Eng. Technol., 5:1 (2009), 6–13

[5] Harjani J., Lopez B., Sadarangani K., “Fixed point theorems for weakly $C$-contractive mappings in ordered metric spaces”, Comput. Math. Appl., 61:4 (2011), 790–796 | DOI | MR | Zbl

[6] Shatanawi W., “Fixed point theorems for nonlinear weakly $C$-contractive mappings in metric spaces”, Math. Comput. Modelling, 54:11–12 (2011), 2816–2826 | DOI | MR | Zbl

[7] Filipović M., Paunović L., Radenović S., Rajović M., “Remarks on `Cone metric spaces and fixed point theorems of $T$-Kannan and $T$-Chatterjea contractive mappings' ”, Math. Comput. Modelling, 54:5–6 (2011), 1467–1472 | DOI | MR | Zbl

[8] Morales J. R., Rojas E., “Cone metric spaces and fixed point theorems of $T$-Kannan contractive mappings”, Int. J. Math. Anal., 4:4 (2010), 175–184 | MR | Zbl

[9] Moradi S., Kannan fixed-point theorem on complete metric spaces and on generalized metric spaces depend on another function, arXiv: 0903.1577v1[math.FA]

[10] Beiranvand A., Moradi S., Omid M., Pazandeh H., Two fixed point theorem for special mapping, arXiv: 0903.1504v1[math.FA]

[11] Khan M. S., Swaleh M., Sessa S., “Fixed point theorems by altering distances between the points”, Bull. Aust. Math. Soc., 30:1 (1984), 1–9 | DOI | MR | Zbl