The existence of a~linear horseshoe of continuous maps of dendrites
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 40-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that a continuous map $f$ defined on a dendrite $X$ has a horseshoe $(A,B)$, where $A$ and $B$ are nonempty disjoint subcontinua in $X$. In this paper we obtain conditions for the structure of sets $A$ and $B$ under which some iteration of $f$ has a linear horseshoe.
Mots-clés : dendrite
Keywords: horseshoe, linear horseshoe.
@article{IVM_2013_3_a3,
     author = {E. N. Makhrova},
     title = {The existence of a~linear horseshoe of continuous maps of dendrites},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--46},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_3_a3/}
}
TY  - JOUR
AU  - E. N. Makhrova
TI  - The existence of a~linear horseshoe of continuous maps of dendrites
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 40
EP  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_3_a3/
LA  - ru
ID  - IVM_2013_3_a3
ER  - 
%0 Journal Article
%A E. N. Makhrova
%T The existence of a~linear horseshoe of continuous maps of dendrites
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 40-46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_3_a3/
%G ru
%F IVM_2013_3_a3
E. N. Makhrova. The existence of a~linear horseshoe of continuous maps of dendrites. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2013), pp. 40-46. http://geodesic.mathdoc.fr/item/IVM_2013_3_a3/

[1] Block A., Teoh E., “How little is little enough”, Discrete Contin. Dyn. Syst., 9:4 (2003), 969–978 | DOI | MR

[2] Libre J., Misiurewicz M., “Horseshoes, entropy and periods for graph maps”, Topology, 32:3 (1993), 649–664 | DOI | MR

[3] Makhrova E. N., “Gomoklinicheskie tochki i topologicheskaya entropiya nepreryvnogo otobrazheniya dendrita”, Sovremennaya matem. i ee prilozh., Tr. mezhdunar. konf. po dinamicheskim sistemam i differents. uravneniyam, Suzdal, 2008, 79–86 | MR

[4] Kocan Zd., Korneka-Kurkova V., Malek M., “Entropy, horseshoes and homoclinic trajectories on trees, graphs and dendrites”, Ergodic theory Dynam. Sys., 31:1 (2011), 165–175 | DOI | MR | Zbl

[5] Peitgen H. O., Richter P. H., The beauty of fractals, Springer, Berlin, 1986 | MR | Zbl

[6] Nadler S. B., Continuum Theory, Marcel Dekker, N.Y., 1992 | MR | Zbl

[7] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969 | MR

[8] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR