Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 67-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove strong convergence of the Browder–Tikhonov regularization method and the regularization inertial proximal point algorithm to a solution of nonlinear ill-posed equations involving $m$-accretive mappings in real, reflexive and strictly convex Banach spaces with a uniformly Gâteaux differentiable norm without weak sequential continuous duality mapping.
Keywords: accretive mapping, regularization method
Mots-clés : proximal point algorithm.
@article{IVM_2013_2_a6,
     author = {Nguyen Buong and Nguen Thi Hong Phuong},
     title = {Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in {Banach} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--74},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/}
}
TY  - JOUR
AU  - Nguyen Buong
AU  - Nguen Thi Hong Phuong
TI  - Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 67
EP  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/
LA  - ru
ID  - IVM_2013_2_a6
ER  - 
%0 Journal Article
%A Nguyen Buong
%A Nguen Thi Hong Phuong
%T Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 67-74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/
%G ru
%F IVM_2013_2_a6
Nguyen Buong; Nguen Thi Hong Phuong. Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 67-74. http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/

[1] Showalter R. E., Monotone operators in Banach spaces and nonlinear partial differential equations, Math. Surveys Monographs AMS, 49, 1997 | MR | Zbl

[2] Li W., Zhen H., “The applications of theories of accretive operators to nonlinear elliptic boundary value problems in $L^p$-spaces”, Non. Anal., 46:1 (2011), 199–211 | MR

[3] Saddeek A. M., “Generalized iterative process and associated regularization for $J$-pseudomonotone mixed variational inequalities”, Appl. Math. and Comput., 213:1 (2009), 8–17 | DOI | MR | Zbl

[4] Alber I. Ya., Ryazantseva I. P., Nonlinear ill-posed problems of monotone type, Springer-Verlag Publishers, 2006 | MR

[5] Ryazantseva I. P., “Regulyarizovannyi proksimalnyi algoritm dlya nelineinykh uravnenii monotonnogo tipa v banakhovom prostranstve”, Zhurn. vychisl. matem. i matem. fiz., 42:9 (2002), 1295–1303 | MR | Zbl

[6] Byong N., Khung V., “Iteratsionnyi metod regulyarizatsii Nyutona–Kantorovicha dlya nelineinykh nekorrektnykh uravnenii, soderzhaschikh akkretivnye operatory”, Ukr. matem. zhurn., 57:2 (2005), 323–330 | MR

[7] Buong Ng., “Projection-regularization method and ill-posedness for equations involving accretive operators”, Vietnamese Math. J., 20:1 (1992), 33–39 | MR | Zbl

[8] Buong Ng., “Generalized discrepancy principle and ill-posed equations involving accretive operators”, J. Nonl. Funct. Anal. Appl., 9:1 (2004), 73–78 | MR | Zbl

[9] Byong N., “Skorost skhodimosti protsessa regulyarizatsii dlya nelineinykh nekorrektnykh uravnenii pri nalichii akkretivnykh vozmuschenii”, Zhurn. vychisl. matem. i matem. fiz., 44:3 (2004), 397–402 | MR | Zbl

[10] Buong Ng., “On nonlinear ill-posed accretive equations”, Southeast Asian Bull. Math., 28:1 (2004), 1–6 | MR

[11] Wang J., Li J., Liu Z., “Regularization method for nonlinear ill-posed problems with accretive operators”, Acta Math. Sci. Ser. B, 28:1 (2008), 141–150 | MR | Zbl

[12] Alvarez F., “On the minimizing property of a second order dissipative system in Hilbert space”, SIAM J. Control and Optim., 38:4 (2000), 1102–1119 | DOI | MR | Zbl

[13] Alvarez F., Attouch H., “An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping”, Set-Valued Anal., 9:1 (2001), 3–11 | DOI | MR | Zbl

[14] Cioranescu I., Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer Acad. Publ., Dordrecht, 1990 | MR | Zbl

[15] Takahashi W., Nonlinear functional analysis, Yokohama Publishers, 2000 | MR | Zbl

[16] Goebel K., Reich S., Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, New York–Basel, 1984 | MR

[17] Takahashi W., Ueda Y., “On Reich's strong convergence theorem for resolvents of accretive operators”, J. Math. Anal. Appl., 104:2 (1984), 546–553 | DOI | MR | Zbl

[18] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993 | MR

[19] Fitzgibbon W. E., “Weak continuous accretive operators”, Bull. Amer. Math. Soc., 79:2 (1973), 473–474 | DOI | MR | Zbl

[20] Webb J. R., “On a property of dual mappings and the $A$-properness of accretive operators”, Bull. London Math. Soc., 13:4 (1981), 235–238 | DOI | MR | Zbl

[21] Browder F. E., “Nonlinear mapping of nonexpansive and accretive type in Banach spaces”, Bull. Amer. Math. Soc., 73:6 (1967), 875–882 | DOI | MR | Zbl

[22] Konyagin S. V., “Approksimativnye svoistva zamknutykh mnozhestv v banakhovykh prostranstvakh i kharakteristiki strogo vypuklykh prostranstv”, DAN SSSR, 251:2 (1980), 276–280 | MR | Zbl