Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 67-74
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove strong convergence of the Browder–Tikhonov regularization method and the regularization inertial proximal point algorithm to a solution of nonlinear ill-posed equations involving $m$-accretive mappings in real, reflexive and strictly convex Banach spaces with a uniformly Gâteaux differentiable norm without weak sequential continuous duality mapping.
Keywords:
accretive mapping, regularization method
Mots-clés : proximal point algorithm.
Mots-clés : proximal point algorithm.
@article{IVM_2013_2_a6,
author = {Nguyen Buong and Nguen Thi Hong Phuong},
title = {Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in {Banach} spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {67--74},
publisher = {mathdoc},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/}
}
TY - JOUR AU - Nguyen Buong AU - Nguen Thi Hong Phuong TI - Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 67 EP - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/ LA - ru ID - IVM_2013_2_a6 ER -
%0 Journal Article %A Nguyen Buong %A Nguen Thi Hong Phuong %T Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 67-74 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/ %G ru %F IVM_2013_2_a6
Nguyen Buong; Nguen Thi Hong Phuong. Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 67-74. http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/