Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 67-74

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove strong convergence of the Browder–Tikhonov regularization method and the regularization inertial proximal point algorithm to a solution of nonlinear ill-posed equations involving $m$-accretive mappings in real, reflexive and strictly convex Banach spaces with a uniformly Gâteaux differentiable norm without weak sequential continuous duality mapping.
Keywords: accretive mapping, regularization method
Mots-clés : proximal point algorithm.
@article{IVM_2013_2_a6,
     author = {Nguyen Buong and Nguen Thi Hong Phuong},
     title = {Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in {Banach} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--74},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/}
}
TY  - JOUR
AU  - Nguyen Buong
AU  - Nguen Thi Hong Phuong
TI  - Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 67
EP  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/
LA  - ru
ID  - IVM_2013_2_a6
ER  - 
%0 Journal Article
%A Nguyen Buong
%A Nguen Thi Hong Phuong
%T Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 67-74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/
%G ru
%F IVM_2013_2_a6
Nguyen Buong; Nguen Thi Hong Phuong. Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 67-74. http://geodesic.mathdoc.fr/item/IVM_2013_2_a6/