The Green function of the boundary value problem on a~star-shaped graph
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 56-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a planar graph consisting of three edges with one common vertex. We are interested in the sign of the Green function of the boundary value problem for a forth-order equation. This problem models deformations of star-shaped coupled networks of beams. We assume that the network is fixed at each vertex, and all beams are rigidly jointed at their common vertex. We prove that the Green function is positive on diagonal squares and establish a sufficient condition for its positivity inside its definition domain.
Keywords: graph, network, differential equation on graph, Green function of problem on graph.
@article{IVM_2013_2_a5,
     author = {R. Ch. Kulaev},
     title = {The {Green} function of the boundary value problem on a~star-shaped graph},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--66},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a5/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
TI  - The Green function of the boundary value problem on a~star-shaped graph
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 56
EP  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_2_a5/
LA  - ru
ID  - IVM_2013_2_a5
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%T The Green function of the boundary value problem on a~star-shaped graph
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 56-66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_2_a5/
%G ru
%F IVM_2013_2_a5
R. Ch. Kulaev. The Green function of the boundary value problem on a~star-shaped graph. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 56-66. http://geodesic.mathdoc.fr/item/IVM_2013_2_a5/

[1] Pokornyi Yu. V., Bakhtina Zh. I., Zvereva M. B., Shabrov S. A., Ostsillyatsionnyi metod Shturma v spektralnykh zadachakh, Fizmatlit, M., 2009 | Zbl

[2] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[3] Dekoninck B., Nicase S., “The eigenvalue problem for network of beams”, Generalized Functions, Oper. Theory and Dynamical Systems, Chapman and Hall Research in Math., 1999, 335–344 | MR | Zbl

[4] Dekoninck B., Nicase S., “Control of network of Euler–Bernoulli beams”, ESAIM: Control Optim. and Calculus of Variations, 4 (1999), 57–82 | DOI | MR

[5] Lagnese J. E., Leugering G., Schmidt E. J. P. G., “Control of planar networks of Timoshenko beams”, SIAM J. Control Optim., 31 (1993), 780–811 | DOI | MR | Zbl

[6] Borovskikh A. V., Mustafakulov R., Lazarev K. P., Pokornyi Yu. V., “Ob odnom klasse differentsialnykh uravnenii chetvertogo poryadka na prostranstvennoi seti”, Dokl. RAN, 345:6 (1995), 730–732 | MR | Zbl

[7] Xu G. Q., Mastorakis N., “Stability of a star-shaped coupled network of strings and beams”, 10th WSEAS Int. Conf. “Mathematical methods and computational techniques in electrical engineering” (Sofia, Bulgaria, May 2–4, 2008), 148–154

[8] Pokornyi Yu. V., Mustafakulov R. O., “O pozitivnoi obratimosti nekotorykh kraevykh zadach dlya uravneniya chetvertogo poryadka”, Differents. uravneniya, 33:10 (1997), 1358–1365 | MR | Zbl

[9] Pokornyi Yu. V., Mustafakulov R. O., “O polozhitelnosti funktsii Grina lineinykh kraevykh zadach dlya uravnenii chetvertogo poryadka na grafe”, Izv. vuzov. Matem., 1995, no. 2, 79–82 | MR | Zbl

[10] Zavgorodnii M. G., “Variatsionnye printsipy postroeniya modelei sterzhnevykh sistem”, Matem. modelir. informatsionnykh i tekhnologicheskikh sistem, 4, Voronezh, 2000, 59–62

[11] Zavgorodnii M. G., Maiorova S. P., “Ob odnom uravnenii matematicheskoi fiziki chetvertogo poryadka na grafe”, Issledovaniya po differentsialnym uravneniyam i matematicheskomu modelirovaniyu, Vladikavkaz, 2008, 88–102