Weighted spherical semidesigns and cubature formulae for calculating integrals on a~sphere
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 49-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study weighted spherical semidesigns, i.e., systems of points on a sphere of a specific type. We propose a new proof of the necessary and sufficient condition for a system of points on a sphere to be a weighted spherical semidesign. This criterion gives new approaches to the construction of cubature formulae for calculating integrals over a sphere with the degree of accuracy of 5 and 9.
Keywords: weighed spherical semidesign
Mots-clés : cubature formula.
@article{IVM_2013_2_a4,
     author = {N. O. Kotelina and A. B. Pevnyi},
     title = {Weighted spherical semidesigns and cubature formulae for calculating integrals on a~sphere},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {49--55},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a4/}
}
TY  - JOUR
AU  - N. O. Kotelina
AU  - A. B. Pevnyi
TI  - Weighted spherical semidesigns and cubature formulae for calculating integrals on a~sphere
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 49
EP  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_2_a4/
LA  - ru
ID  - IVM_2013_2_a4
ER  - 
%0 Journal Article
%A N. O. Kotelina
%A A. B. Pevnyi
%T Weighted spherical semidesigns and cubature formulae for calculating integrals on a~sphere
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 49-55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_2_a4/
%G ru
%F IVM_2013_2_a4
N. O. Kotelina; A. B. Pevnyi. Weighted spherical semidesigns and cubature formulae for calculating integrals on a~sphere. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 49-55. http://geodesic.mathdoc.fr/item/IVM_2013_2_a4/

[1] Reznick B., Sums of even powers of real linear forms, Mem. Amer. Math. Soc., 96, no. 463, 1992, 155 pp. | MR | Zbl

[2] Yudin V. A., “Vrascheniya sfericheskikh dizainov”, Problemy peredachi informatsii, 36:3 (2000), 39–45 | MR | Zbl

[3] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl

[4] Lebedev V. I., “Znacheniya uzlov i vesov kvadraturnykh formul tipa Gaussa–Markova dlya sfery ot 9-go do 17-go poryadka tochnosti, invariantnykh otnositelno gruppy oktaedra s inversiei”, Zhurn. vychisl. matem. i matem. fiz., 15:1 (1975), 48–54 | MR | Zbl

[5] Sobolev C. L., “O formulakh mekhanicheskikh kvadratur na poverkhnosti sfery”, Sib. matem. zhurn., 3:5 (1962), 769–796 | MR | Zbl