Weighted spherical semidesigns and cubature formulae for calculating integrals on a sphere
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 49-55
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we study weighted spherical semidesigns, i.e., systems of points on a sphere of a specific type. We propose a new proof of the necessary and sufficient condition for a system of points on a sphere to be a weighted spherical semidesign. This criterion gives new approaches to the construction of cubature formulae for calculating integrals over a sphere with the degree of accuracy of 5 and 9.
Keywords:
weighed spherical semidesign
Mots-clés : cubature formula.
Mots-clés : cubature formula.
@article{IVM_2013_2_a4,
author = {N. O. Kotelina and A. B. Pevnyi},
title = {Weighted spherical semidesigns and cubature formulae for calculating integrals on a~sphere},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {49--55},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a4/}
}
TY - JOUR AU - N. O. Kotelina AU - A. B. Pevnyi TI - Weighted spherical semidesigns and cubature formulae for calculating integrals on a sphere JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 49 EP - 55 IS - 2 UR - http://geodesic.mathdoc.fr/item/IVM_2013_2_a4/ LA - ru ID - IVM_2013_2_a4 ER -
N. O. Kotelina; A. B. Pevnyi. Weighted spherical semidesigns and cubature formulae for calculating integrals on a sphere. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 49-55. http://geodesic.mathdoc.fr/item/IVM_2013_2_a4/
[1] Reznick B., Sums of even powers of real linear forms, Mem. Amer. Math. Soc., 96, no. 463, 1992, 155 pp. | MR | Zbl
[2] Yudin V. A., “Vrascheniya sfericheskikh dizainov”, Problemy peredachi informatsii, 36:3 (2000), 39–45 | MR | Zbl
[3] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl
[4] Lebedev V. I., “Znacheniya uzlov i vesov kvadraturnykh formul tipa Gaussa–Markova dlya sfery ot 9-go do 17-go poryadka tochnosti, invariantnykh otnositelno gruppy oktaedra s inversiei”, Zhurn. vychisl. matem. i matem. fiz., 15:1 (1975), 48–54 | MR | Zbl
[5] Sobolev C. L., “O formulakh mekhanicheskikh kvadratur na poverkhnosti sfery”, Sib. matem. zhurn., 3:5 (1962), 769–796 | MR | Zbl