Local automorphisms of nilpotent algebras of matrices of small orders
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 40-48
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be an associative commutative ring with identity and let $R$ be the algebra of lower niltriangular $n\times n$-matrices over $K$. For $n=3$ we prove that local automorphisms and Lie ones of the algebra $R$ generate all local Lie automorphisms of the latter. For the case when $K$ is a field and $n=4$ we describe local automorphisms and local derivations of the algebra $R$, as well as its local Lie automorphisms.
Keywords:
nilpotent algebra, associated Lie algebra, local automorphism, local derivation.
@article{IVM_2013_2_a3,
author = {A. P. Elisova},
title = {Local automorphisms of nilpotent algebras of matrices of small orders},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {40--48},
publisher = {mathdoc},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a3/}
}
A. P. Elisova. Local automorphisms of nilpotent algebras of matrices of small orders. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 40-48. http://geodesic.mathdoc.fr/item/IVM_2013_2_a3/