Local automorphisms of nilpotent algebras of matrices of small orders
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 40-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be an associative commutative ring with identity and let $R$ be the algebra of lower niltriangular $n\times n$-matrices over $K$. For $n=3$ we prove that local automorphisms and Lie ones of the algebra $R$ generate all local Lie automorphisms of the latter. For the case when $K$ is a field and $n=4$ we describe local automorphisms and local derivations of the algebra $R$, as well as its local Lie automorphisms.
Keywords: nilpotent algebra, associated Lie algebra, local automorphism, local derivation.
@article{IVM_2013_2_a3,
     author = {A. P. Elisova},
     title = {Local automorphisms of nilpotent algebras of matrices of small orders},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--48},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a3/}
}
TY  - JOUR
AU  - A. P. Elisova
TI  - Local automorphisms of nilpotent algebras of matrices of small orders
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 40
EP  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_2_a3/
LA  - ru
ID  - IVM_2013_2_a3
ER  - 
%0 Journal Article
%A A. P. Elisova
%T Local automorphisms of nilpotent algebras of matrices of small orders
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 40-48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_2_a3/
%G ru
%F IVM_2013_2_a3
A. P. Elisova. Local automorphisms of nilpotent algebras of matrices of small orders. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 40-48. http://geodesic.mathdoc.fr/item/IVM_2013_2_a3/

[1] Larson D. R., Sourour A. R., “Local derivations and local automorphisms of $B(H)$”, Proc. Sympos. Pure Math., 51 (1990), 187–194 | DOI | MR | Zbl

[2] Crist R., “Local automorphisms”, Proc. Amer. Math. Soc., 128 (2000), 1409–1414 | DOI | MR | Zbl

[3] Hadwin D., Li J., “Local derivations and local automorphisms”, J. Math. Anal. Appl., 290 (2004), 702–714 | DOI | MR | Zbl

[4] Kadison R., “Local derivations”, J. Algebra, 130 (1990), 494–509 | DOI | MR | Zbl

[5] Semrl P., “Local automorphisms and derivations on $B(H)$”, Proc. Amer. Math. Soc., 125 (1997), 2677–2680 | DOI | MR | Zbl

[6] Elisova A. P., Zotov I. N., Levchuk V. M., Suleimanova G. S., “Lokalnye avtomorfizmy i lokalnye differentsirovaniya nilpotentnykh matrichnykh algebr”, Izv. Irkutsk. gos. un-ta, 4:1 (2011), 9–19

[7] Levchuk V. M., “Svyazi unitreugolnoi gruppy s nekotorymi koltsami. II. Gruppy avtomorfizmov”, Sib. matem. zhurn., 24:4 (1983), 543–557 | MR | Zbl

[8] Levchuk V. M., Minakova E. V., “Elementarnaya ekvivalentnost i izomorfizmy lokalno-nilpotentnykh matrichnykh grupp i kolets”, Dokl. RAN, 425:2 (2009), 165–168 | MR | Zbl

[9] Levchuk V. M., Radchenko O. V., “Derivations of the locally nilpotent matrix rings”, J. Algebra and Appl., 9:5 (2010), 717–724 | DOI | MR | Zbl

[10] Elisova A. P., “Lokalnye avtomorfizmy algebry niltreugolnykh matrits nad koltsom”, Algebra, logika i metodika obucheniya matematike, Cb. mat-v Vseros. konf., KGPU, Krasnoyarsk, 2010, 37–42

[11] Elisova A. P., “Lokalnye avtomorfizmy i differentsirovaniya algebr niltreugolnykh matrits”, Tezisy dokladov mezhd. konf. po teorii kolets, izd-vo Instituta matematiki SO RAN, Novosibirsk, 2011, 8–10