Local automorphisms of nilpotent algebras of matrices of small orders
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 40-48

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be an associative commutative ring with identity and let $R$ be the algebra of lower niltriangular $n\times n$-matrices over $K$. For $n=3$ we prove that local automorphisms and Lie ones of the algebra $R$ generate all local Lie automorphisms of the latter. For the case when $K$ is a field and $n=4$ we describe local automorphisms and local derivations of the algebra $R$, as well as its local Lie automorphisms.
Keywords: nilpotent algebra, associated Lie algebra, local automorphism, local derivation.
@article{IVM_2013_2_a3,
     author = {A. P. Elisova},
     title = {Local automorphisms of nilpotent algebras of matrices of small orders},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--48},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a3/}
}
TY  - JOUR
AU  - A. P. Elisova
TI  - Local automorphisms of nilpotent algebras of matrices of small orders
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 40
EP  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_2_a3/
LA  - ru
ID  - IVM_2013_2_a3
ER  - 
%0 Journal Article
%A A. P. Elisova
%T Local automorphisms of nilpotent algebras of matrices of small orders
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 40-48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_2_a3/
%G ru
%F IVM_2013_2_a3
A. P. Elisova. Local automorphisms of nilpotent algebras of matrices of small orders. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 40-48. http://geodesic.mathdoc.fr/item/IVM_2013_2_a3/