Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 30-39
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that for any function $f$ from the class $L^r$ on $[0,1)$ one can find a function $g$ from the same class (which differs from $f$ on a set of arbitrarily small measure) whose greedy algorithm with respect to the Vilenkin system converges to $f$.
Keywords:
Vilenkin system, greedy algorithm
Mots-clés : Fourier coefficients.
Mots-clés : Fourier coefficients.
@article{IVM_2013_2_a2,
author = {M. G. Grigoryan and S. A. Sargsyan},
title = {Nonlinear approximation of functions from the class $L^r$ with respect to the {Vilenkin} system},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {30--39},
publisher = {mathdoc},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a2/}
}
TY - JOUR AU - M. G. Grigoryan AU - S. A. Sargsyan TI - Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 30 EP - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_2_a2/ LA - ru ID - IVM_2013_2_a2 ER -
%0 Journal Article %A M. G. Grigoryan %A S. A. Sargsyan %T Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 30-39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_2_a2/ %G ru %F IVM_2013_2_a2
M. G. Grigoryan; S. A. Sargsyan. Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 30-39. http://geodesic.mathdoc.fr/item/IVM_2013_2_a2/