Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 30-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that for any function $f$ from the class $L^r$ on $[0,1)$ one can find a function $g$ from the same class (which differs from $f$ on a set of arbitrarily small measure) whose greedy algorithm with respect to the Vilenkin system converges to $f$.
Keywords: Vilenkin system, greedy algorithm
Mots-clés : Fourier coefficients.
@article{IVM_2013_2_a2,
     author = {M. G. Grigoryan and S. A. Sargsyan},
     title = {Nonlinear approximation of functions from the class $L^r$ with respect to the {Vilenkin} system},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--39},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a2/}
}
TY  - JOUR
AU  - M. G. Grigoryan
AU  - S. A. Sargsyan
TI  - Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 30
EP  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_2_a2/
LA  - ru
ID  - IVM_2013_2_a2
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%A S. A. Sargsyan
%T Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 30-39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_2_a2/
%G ru
%F IVM_2013_2_a2
M. G. Grigoryan; S. A. Sargsyan. Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 30-39. http://geodesic.mathdoc.fr/item/IVM_2013_2_a2/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[2] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981

[3] Vilenkin N. Ya., “Ob odnom klasse polnykh ortogonalnykh sistem”, Izv. AN SSSR. Ser. matem., 11:4 (1947), 363–400 | MR | Zbl

[4] Watari C., “On generalizes Walsh–Fourier series. I”, Proc. Japan Acad., 73:8 (1957), 435–438 | DOI | MR

[5] Young W.-S., “Mean convergence of generalized Walsh–Fourier series”, Trans. Amer. Math. Soc., 218 (1976), 311–320 | DOI | MR | Zbl

[6] Zubakin A. M., “O teoremakh “ispravleniya” Menshova dlya odnogo klassa multiplikativnykh ortonormirovannykh sistem funktsii”, Izv. vuzov. Matem., 1969, no. 12, 34–46 | MR | Zbl

[7] Gosselin J. A., “Convergence a.e. Vilenkin–Fourier series”, Trans. Amer. Math. Soc., 185 (1973), 345–370 | DOI | MR

[8] Blyumin S. L., “Nekotorye svoistva odnogo klassa multiplikativnykh sistem i voprosy priblizheniya funktsii polinomami po etim sistemam”, Izv. vuzov. Matem., 1968, no. 4, 13–22 | MR | Zbl

[9] Price J. J., “Certain groups of orthonormal step functions”, Can. J. Math., 9:3 (1957), 413–425 | DOI | MR | Zbl

[10] Wojtaszczyk P., “Greedy algorithm for general biorthogonal systems”, J. Approxim. Theory, 107 (2000), 293–314 | DOI | MR | Zbl

[11] DeVore R. A., Temlyakov V. N., “Some remarks on greedy algorithms”, Advances in Comput. Math., 5 (1996), 173–187 | DOI | MR | Zbl

[12] Konyagin S. V., Temlyakov V. N., “A remark on greedy approximation in Banach spaces”, East J. Approxim., 5:1 (1999), 1–15 | MR

[13] Körner T. W., “Divergence of decreasing rearranged Fourier series”, Ann. Math., 144 (1996), 167–180 | DOI | MR

[14] Körner T. W., “Decreasing rearranged Fourier series”, J. Fourier Anal. Appl., 5 (1999), 1–19 | DOI | MR

[15] Temlyakov V. N., “Nonlinear methods of approximation”, Found. Comput. Math., 3 (2003), 33–107 | DOI | MR | Zbl

[16] Gribonval R., Nielsen M., On the quasi-greedy property and uniformly bounded orthonormal systems, http://people.math.aau.dk/~mnielsen/reprints/R-2003-09.pdf

[17] Menchoff D. E., “Sur la représentation des fonctions mesurables par des séries trigonométriques”, Matem. sb., 9(51):3 (1941), 667–692 | MR | Zbl

[18] Grigorian M. G., Zink R. E., “Greedy approximation with respect to certain subsystems of the Walsh orthonormal system”, Proc. Amer. Math. Soc., 134:12 (2006), 3495–3505 | DOI | MR | Zbl

[19] Grigoryan M. G., “O skhodimosti v metrike $L^p$ gridi algoritma po trigonometricheskoi sisteme”, Izv. NAN Armenii. Matem., 39:5 (2004), 37–52 | MR

[20] Grigorian M. G., Kazarian K. S., Soria F., “Mean convergence of orthonormal Fourier series of modified functions”, Trans. Amer. Math. Soc., 352:8 (2000), 3777–3799 | DOI | MR

[21] Grigoryan M. G., “Modifikatsii funktsii, koeffitsienty Fure i nelineinaya approksimatsiya”, Matem. sb., 203:3 (2012), 49–78 | DOI | MR | Zbl

[22] Arutyunyan F. G., “O ryadakh po sisteme Khaara”, Dokl. ArmSSR, 42:3 (1966), 134–140 | MR | Zbl

[23] Price J. J., “Walsh series and adjustment of functions on small sets”, Illinois J. Math., 13 (1969), 131–136 | MR | Zbl

[24] Olevskii A. M., “Modifikatsiya funktsii i ryady Fure”, UMN, 40:3 (1985), 157–193 | MR | Zbl

[25] Grigoryan M. G., “O skhodimosti v metrike $L^1$ i pochti vsyudu ryadov Fure po polnym ortonormirovannym sistemam”, Matem. sb., 181:8 (1990), 1011–1030 | MR | Zbl

[26] Grigorian M. G., “On the representation of functions by orthogonal series in weighted $L^p$ spaces”, Stud. Math., 134:3 (1999), 207–216 | MR | Zbl

[27] Grigoryan M. G., “Ob usilennom $L^p_\mu$-svoistve ortonormirovannykh sistem”, Matem. sb., 194:10 (2003), 77–106 | DOI | MR | Zbl