Eight-dimensional Bol webs with an almost zero curvature tensor
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 3-15
Cet article a éte moissonné depuis la source Math-Net.Ru
Earlier V. I. Fedorova has described classes of six-dimensional Bol webs. Later M. V. Antipova studied multidimensional middle Bol webs with a single nonzero component of the curvature tensor generalizing the mentioned class. In this paper we consider eight-dimensional Bol webs with the same property of the curvature tensor. We show that there exist only two classes of such webs and obtain the corresponding equations.
Keywords:
Bol three-web, Lie algebra.
@article{IVM_2013_2_a0,
author = {M. V. Antipova and A. M. Shelekhov},
title = {Eight-dimensional {Bol} webs with an almost zero curvature tensor},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--15},
year = {2013},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a0/}
}
M. V. Antipova; A. M. Shelekhov. Eight-dimensional Bol webs with an almost zero curvature tensor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2013_2_a0/
[1] Antipova M. V., “O tkanyakh Bola s pochti nulevym tenzorom krivizny”, Izvestiya PGPU im. V. G. Belinskogo, 2011, no. 26, 28–34
[2] Fedorova V. I., “Shestimernye tri-tkani Bola s simmetrichnym tenzorom $a_{ij}$”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1981, 110–123 | MR | Zbl
[3] Akivis M. A., Shelekhov A. M., Mnogomernye tri-tkani i ikh prilozheniya, Tver. gos. un-t, Tver, 2010
[4] Mubarakzyanov G. M., “O razreshimykh algebrakh Li”, Izv. vuzov. Matem., 1963, no. 1, 114–123 | MR | Zbl