Eight-dimensional Bol webs with an almost zero curvature tensor
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier V. I. Fedorova has described classes of six-dimensional Bol webs. Later M. V. Antipova studied multidimensional middle Bol webs with a single nonzero component of the curvature tensor generalizing the mentioned class. In this paper we consider eight-dimensional Bol webs with the same property of the curvature tensor. We show that there exist only two classes of such webs and obtain the corresponding equations.
Keywords: Bol three-web, Lie algebra.
@article{IVM_2013_2_a0,
     author = {M. V. Antipova and A. M. Shelekhov},
     title = {Eight-dimensional {Bol} webs with an almost zero curvature tensor},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_2_a0/}
}
TY  - JOUR
AU  - M. V. Antipova
AU  - A. M. Shelekhov
TI  - Eight-dimensional Bol webs with an almost zero curvature tensor
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 3
EP  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_2_a0/
LA  - ru
ID  - IVM_2013_2_a0
ER  - 
%0 Journal Article
%A M. V. Antipova
%A A. M. Shelekhov
%T Eight-dimensional Bol webs with an almost zero curvature tensor
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 3-15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_2_a0/
%G ru
%F IVM_2013_2_a0
M. V. Antipova; A. M. Shelekhov. Eight-dimensional Bol webs with an almost zero curvature tensor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2013), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2013_2_a0/

[1] Antipova M. V., “O tkanyakh Bola s pochti nulevym tenzorom krivizny”, Izvestiya PGPU im. V. G. Belinskogo, 2011, no. 26, 28–34

[2] Fedorova V. I., “Shestimernye tri-tkani Bola s simmetrichnym tenzorom $a_{ij}$”, Tkani i kvazigruppy, Kalininskii gos. un-t, Kalinin, 1981, 110–123 | MR | Zbl

[3] Akivis M. A., Shelekhov A. M., Mnogomernye tri-tkani i ikh prilozheniya, Tver. gos. un-t, Tver, 2010

[4] Mubarakzyanov G. M., “O razreshimykh algebrakh Li”, Izv. vuzov. Matem., 1963, no. 1, 114–123 | MR | Zbl