Solvability of a~nonlocal problem for a~loaded parabolic-hyperbolic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 73-81
Voir la notice de l'article provenant de la source Math-Net.Ru
For a mixed-type equation we study a problem with generalized fractional integro-differentiation operators in the boundary condition. We prove its unique solvability under inequality-type conditions imposed on the known functions for various orders of fractional integro-differentiation operators. We prove the existence of a solution to the problem by reducing the latter to a fractional differential equation.
Keywords:
boundary value problem, generalized fractional integro-differentiation operators, Gauss hypergeometric function.
@article{IVM_2013_1_a6,
author = {A. V. Tarasenko},
title = {Solvability of a~nonlocal problem for a~loaded parabolic-hyperbolic equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {73--81},
publisher = {mathdoc},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_1_a6/}
}
A. V. Tarasenko. Solvability of a~nonlocal problem for a~loaded parabolic-hyperbolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 73-81. http://geodesic.mathdoc.fr/item/IVM_2013_1_a6/