Solvability of a~nonlocal problem for a~loaded parabolic-hyperbolic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 73-81

Voir la notice de l'article provenant de la source Math-Net.Ru

For a mixed-type equation we study a problem with generalized fractional integro-differentiation operators in the boundary condition. We prove its unique solvability under inequality-type conditions imposed on the known functions for various orders of fractional integro-differentiation operators. We prove the existence of a solution to the problem by reducing the latter to a fractional differential equation.
Keywords: boundary value problem, generalized fractional integro-differentiation operators, Gauss hypergeometric function.
@article{IVM_2013_1_a6,
     author = {A. V. Tarasenko},
     title = {Solvability of a~nonlocal problem for a~loaded parabolic-hyperbolic equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--81},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_1_a6/}
}
TY  - JOUR
AU  - A. V. Tarasenko
TI  - Solvability of a~nonlocal problem for a~loaded parabolic-hyperbolic equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 73
EP  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_1_a6/
LA  - ru
ID  - IVM_2013_1_a6
ER  - 
%0 Journal Article
%A A. V. Tarasenko
%T Solvability of a~nonlocal problem for a~loaded parabolic-hyperbolic equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 73-81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_1_a6/
%G ru
%F IVM_2013_1_a6
A. V. Tarasenko. Solvability of a~nonlocal problem for a~loaded parabolic-hyperbolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 73-81. http://geodesic.mathdoc.fr/item/IVM_2013_1_a6/