To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 51-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence, uniqueness, and constant sign property of classical solutions to a nonlocal boundary value problem for a second-order elliptic equation in a bounded domain of the Euclidean space. Using the system of maps that define superposition operators, we construct some subset of the domain boundary and establish the connection between the solvability of the problem under consideration and the solvability of the boundary value equation on the constructed subset.
Keywords: nonlocal problem, subset of boundary, solvability of the boundary value equation.
@article{IVM_2013_1_a4,
     author = {A. K. Ratyni},
     title = {To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--61},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/}
}
TY  - JOUR
AU  - A. K. Ratyni
TI  - To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 51
EP  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/
LA  - ru
ID  - IVM_2013_1_a4
ER  - 
%0 Journal Article
%A A. K. Ratyni
%T To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 51-61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/
%G ru
%F IVM_2013_1_a4
A. K. Ratyni. To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 51-61. http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/

[1] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[2] Ratyni A. K., “O nekotorykh mnozhestvakh evklidova prostranstva, porozhdaemykh sistemoi nepreryvnykh otobrazhenii”, Mater. I mezhdun. nauchno-prakticheskoi konf. “Fiziko-matematicheskie i estestvennye nauki” (30 iyulya 2011), ed. A. V. Bobyrev, Izd-vo “Pero”, M., 2011, 5–9

[3] Bitsadze A. V., “Ob odnom klasse uslovno razreshimykh nelokalnykh kraevykh zadach dlya garmonicheskikh funktsii”, DAN SSSR, 280:3 (1985), 521–524 | MR | Zbl

[4] Antonevich A. B., Lineinye funktsionalnye uravneniya: operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl

[5] Ratyni A. K., “O nelokalnykh kraevykh zadachakh dlya ellipticheskikh i parabolicheskikh uravnenii. 1”, Kraevye zadachi, Sb., Perm, 1990, 127–131 | MR

[6] Skubachevskii A. L., “O metode srezayuschikh funktsii v teorii nelokalnykh zadach”, Differents. uravneniya, 27:1 (1991), 128–139 | MR

[7] Galakhov E. I., Skubachevskii A. L., “On the non-existence of Feller semigroups in the non-transversal case”, J. Differ. Equat., 176:2 (2001), 315–355 | DOI | MR | Zbl

[8] Ratyni A. K., “Ob ellipticheskoi kraevoi zadache s operatorom superpozitsii v granichnom uslovii. II”, Izv. vuzov. Matem., 2002, no. 6, 54–62 | MR | Zbl

[9] Ratyni A. K., “O razreshimosti pervoi nelokalnoi kraevoi zadachi dlya ellipticheskogo uravneniya”, Differents. uravneniya, 45:6 (2009), 844–854 | MR | Zbl

[10] Ratyni A. K., “Ellipticheskaya kraevaya zadacha s neskolkimi operatorami superpozitsii v granichnom uslovii. 3”, Sovremennye metody teorii kraevykh zadach, Sb. mater. Voronezhskoi vesennei matem. shkoly “Pontryaginskie chteniya XXI” (Voronezh, 2010), Izd-vo Voronezhsk. gos. un-ta, Voronezh, 2010, 186–187

[11] Shvarts L., Analiz, v. 1, Mir, M., 1972