Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_1_a4, author = {A. K. Ratyni}, title = {To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {51--61}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/} }
TY - JOUR AU - A. K. Ratyni TI - To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 51 EP - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/ LA - ru ID - IVM_2013_1_a4 ER -
%0 Journal Article %A A. K. Ratyni %T To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 51-61 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/ %G ru %F IVM_2013_1_a4
A. K. Ratyni. To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 51-61. http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/
[1] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968
[2] Ratyni A. K., “O nekotorykh mnozhestvakh evklidova prostranstva, porozhdaemykh sistemoi nepreryvnykh otobrazhenii”, Mater. I mezhdun. nauchno-prakticheskoi konf. “Fiziko-matematicheskie i estestvennye nauki” (30 iyulya 2011), ed. A. V. Bobyrev, Izd-vo “Pero”, M., 2011, 5–9
[3] Bitsadze A. V., “Ob odnom klasse uslovno razreshimykh nelokalnykh kraevykh zadach dlya garmonicheskikh funktsii”, DAN SSSR, 280:3 (1985), 521–524 | MR | Zbl
[4] Antonevich A. B., Lineinye funktsionalnye uravneniya: operatornyi podkhod, Universitetskoe, Minsk, 1988 | MR | Zbl
[5] Ratyni A. K., “O nelokalnykh kraevykh zadachakh dlya ellipticheskikh i parabolicheskikh uravnenii. 1”, Kraevye zadachi, Sb., Perm, 1990, 127–131 | MR
[6] Skubachevskii A. L., “O metode srezayuschikh funktsii v teorii nelokalnykh zadach”, Differents. uravneniya, 27:1 (1991), 128–139 | MR
[7] Galakhov E. I., Skubachevskii A. L., “On the non-existence of Feller semigroups in the non-transversal case”, J. Differ. Equat., 176:2 (2001), 315–355 | DOI | MR | Zbl
[8] Ratyni A. K., “Ob ellipticheskoi kraevoi zadache s operatorom superpozitsii v granichnom uslovii. II”, Izv. vuzov. Matem., 2002, no. 6, 54–62 | MR | Zbl
[9] Ratyni A. K., “O razreshimosti pervoi nelokalnoi kraevoi zadachi dlya ellipticheskogo uravneniya”, Differents. uravneniya, 45:6 (2009), 844–854 | MR | Zbl
[10] Ratyni A. K., “Ellipticheskaya kraevaya zadacha s neskolkimi operatorami superpozitsii v granichnom uslovii. 3”, Sovremennye metody teorii kraevykh zadach, Sb. mater. Voronezhskoi vesennei matem. shkoly “Pontryaginskie chteniya XXI” (Voronezh, 2010), Izd-vo Voronezhsk. gos. un-ta, Voronezh, 2010, 186–187
[11] Shvarts L., Analiz, v. 1, Mir, M., 1972