To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 51-61
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the existence, uniqueness, and constant sign property of classical solutions to a nonlocal boundary value problem for a second-order elliptic equation in a bounded domain of the Euclidean space. Using the system of maps that define superposition operators, we construct some subset of the domain boundary and establish the connection between the solvability of the problem under consideration and the solvability of the boundary value equation on the constructed subset.
Keywords:
nonlocal problem, subset of boundary, solvability of the boundary value equation.
@article{IVM_2013_1_a4,
author = {A. K. Ratyni},
title = {To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {51--61},
publisher = {mathdoc},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/}
}
TY - JOUR AU - A. K. Ratyni TI - To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 51 EP - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/ LA - ru ID - IVM_2013_1_a4 ER -
%0 Journal Article %A A. K. Ratyni %T To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 51-61 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/ %G ru %F IVM_2013_1_a4
A. K. Ratyni. To the theory of boundary problems for elliptic equations with superposition operators in the boundary condition. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 51-61. http://geodesic.mathdoc.fr/item/IVM_2013_1_a4/