A relative variant of the Morse theory
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a relative variant of the Morse theory for Lipschitz functionals defined on closed subsets of a Banach manifold. We prove the invariance of topological characteristics of functionals under uniform deformations.
Keywords: nonsmooth analysis, functional, space, manifold, critical value.
@article{IVM_2013_1_a1,
     author = {V. S. Klimov},
     title = {A relative variant of the {Morse} theory},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--30},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_1_a1/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - A relative variant of the Morse theory
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 21
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_1_a1/
LA  - ru
ID  - IVM_2013_1_a1
ER  - 
%0 Journal Article
%A V. S. Klimov
%T A relative variant of the Morse theory
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 21-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_1_a1/
%G ru
%F IVM_2013_1_a1
V. S. Klimov. A relative variant of the Morse theory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2013), pp. 21-30. http://geodesic.mathdoc.fr/item/IVM_2013_1_a1/

[1] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[2] Rockafellar R. T., “Generalized directional derivatives and subgradients of nonconvex functions”, Can. J. Math., 32:2 (1980), 257–280 | DOI | MR | Zbl

[3] Klimov V. S., “Minimaksnye kriticheskie znacheniya negladkikh funktsionalov”, Sib. matem. zhurn., 33:3 (1992), 91–100 | MR | Zbl

[4] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967

[5] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl

[6] Zaslavskii L. Ya., “O kriticheskikh tochkakh lipshitsevykh funktsii na gladkikh mnogoobraziyakh”, Sib. matem. zhurn., 22:1 (1981), 87–93 | MR

[7] Palais R. S., “Lusternik–Schnirelman theory on Banach manifolds”, Topology, 5:2 (1966), 115–132 | DOI | MR | Zbl

[8] Klimov V. S., “Deformatsionnyi printsip minimuma i vetvlenie ekstremalei”, Matematika v Yaroslavskom universitete, YarGU, Yaroslavl, 2011, 109–118 | MR

[9] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR

[10] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR

[11] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[12] Klimov V. S., “Beskonechnomernyi variant teoremy Puankare–Khopfa i gomologicheskie kharakteristiki funktsionalov”, Matem. sb., 192:1 (2001), 51–66 | DOI | MR | Zbl