Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2013_12_a8, author = {R. B. Salimov and P. L. Shabalin}, title = {A homogeneous {Hilbert} problem with a~countable set of discontinuity points of coefficients and a~logarithmic singularity of index}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {83--88}, publisher = {mathdoc}, number = {12}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2013_12_a8/} }
TY - JOUR AU - R. B. Salimov AU - P. L. Shabalin TI - A homogeneous Hilbert problem with a~countable set of discontinuity points of coefficients and a~logarithmic singularity of index JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 83 EP - 88 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_12_a8/ LA - ru ID - IVM_2013_12_a8 ER -
%0 Journal Article %A R. B. Salimov %A P. L. Shabalin %T A homogeneous Hilbert problem with a~countable set of discontinuity points of coefficients and a~logarithmic singularity of index %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 83-88 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_12_a8/ %G ru %F IVM_2013_12_a8
R. B. Salimov; P. L. Shabalin. A homogeneous Hilbert problem with a~countable set of discontinuity points of coefficients and a~logarithmic singularity of index. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 83-88. http://geodesic.mathdoc.fr/item/IVM_2013_12_a8/
[1] Alekna P. Yu., “Kraevaya zadacha Gilberta s beskonechnym indeksom logarifmicheskogo poryadka dlya poluploskosti”, Lit. matem. rink., 17:1 (1977), 5–11 | MR
[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl
[3] Alekna P. Yu., “Ob odnorodnoi kraevoi zadache Rimana s beskonechnym indeksom logarifmicheskogo poryadka dlya poluploskosti”, Lit. matem. rink., 13:3 (1973), 5–13 | MR | Zbl
[4] Alekna P. Yu., “Neodnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom logarifmicheskogo poryadka $0\gamma1$ dlya poluploskosti”, Lit. matem. rink., 14:3 (1974), 5–18 | MR | Zbl
[5] Yurov P. G., “Odnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom logarifmicheskogo tipa”, Izv. vuzov. Matem., 1966, no. 2, 158–163 | MR | Zbl
[6] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR | Zbl
[7] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazansk. matem. o-va, Kazan, 2005
[8] Salimov R., Shabalin P., “The Riemann–Hilbert boundary value problem with a countable set of coefficient discontinuities and two-side curling at infinity of order less than $1/2$”, Spectral theory, mathematical system theory, evolution equations, differential and difference equations, Operator Theory: Advances and Applications, 221, Springer Basel AG, 2012, 571–585 | MR
[9] Salimov R. B., Shabalin P. L., “Odnorodnaya zadacha Gilberta s razryvnymi koeffitsientami i dvustoronnim zavikhreniem na beskonechnosti poryadka $1/2\leq\rho1$”, Izv. vuzov. Matem., 2012, no. 11, 67–71 | Zbl