A homogeneous Hilbert problem with a~countable set of discontinuity points of coefficients and a~logarithmic singularity of index
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 83-88
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Hilbert problem for the upper half-plane with a countable set of discontinuity points of coefficients of the boundary condition and with a two-side curling at infinity of a logarithmic order. We obtain formulas for the general solution to the problem.
Keywords:
Riemann–Hilbert boundary value problem, curling at infinity, infinite index, entire function.
@article{IVM_2013_12_a8,
author = {R. B. Salimov and P. L. Shabalin},
title = {A homogeneous {Hilbert} problem with a~countable set of discontinuity points of coefficients and a~logarithmic singularity of index},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {83--88},
publisher = {mathdoc},
number = {12},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2013_12_a8/}
}
TY - JOUR AU - R. B. Salimov AU - P. L. Shabalin TI - A homogeneous Hilbert problem with a~countable set of discontinuity points of coefficients and a~logarithmic singularity of index JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2013 SP - 83 EP - 88 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2013_12_a8/ LA - ru ID - IVM_2013_12_a8 ER -
%0 Journal Article %A R. B. Salimov %A P. L. Shabalin %T A homogeneous Hilbert problem with a~countable set of discontinuity points of coefficients and a~logarithmic singularity of index %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2013 %P 83-88 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2013_12_a8/ %G ru %F IVM_2013_12_a8
R. B. Salimov; P. L. Shabalin. A homogeneous Hilbert problem with a~countable set of discontinuity points of coefficients and a~logarithmic singularity of index. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 83-88. http://geodesic.mathdoc.fr/item/IVM_2013_12_a8/