The uniqueness of a~solution to the inverse Cauchy problem for a~fractional differential equation in a~Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 19-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider linear fractional differential operator equations involving Caputo derivative. The goal of this paper is to establish conditions of the unique solvability of the inverse Cauchy problem for these equations. We use properties of the Mittag-Leffler function and the calculus of sectorial operators in a Banach space. For equations with operators in a general form we obtain sufficient conditions for the unique solvability, and for equations with densely defined sectorial operators we obtain necessary and sufficient unique solvability conditions.
Keywords: fractional differential equations, Caputo derivative, Banach space, inverse Cauchy problem, uniqueness of solution, ill-posed problems, Mittag-Leffler function, calculus of sectorial operators
Mots-clés : fractional Fokker–Planck equation, subdiffusion.
@article{IVM_2013_12_a2,
     author = {M. M. Kokurin},
     title = {The uniqueness of a~solution to the inverse {Cauchy} problem for a~fractional differential equation in {a~Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--35},
     publisher = {mathdoc},
     number = {12},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2013_12_a2/}
}
TY  - JOUR
AU  - M. M. Kokurin
TI  - The uniqueness of a~solution to the inverse Cauchy problem for a~fractional differential equation in a~Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2013
SP  - 19
EP  - 35
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2013_12_a2/
LA  - ru
ID  - IVM_2013_12_a2
ER  - 
%0 Journal Article
%A M. M. Kokurin
%T The uniqueness of a~solution to the inverse Cauchy problem for a~fractional differential equation in a~Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2013
%P 19-35
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2013_12_a2/
%G ru
%F IVM_2013_12_a2
M. M. Kokurin. The uniqueness of a~solution to the inverse Cauchy problem for a~fractional differential equation in a~Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2013), pp. 19-35. http://geodesic.mathdoc.fr/item/IVM_2013_12_a2/

[1] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[2] Bajlekova E. G., Fractional evolution equations in Banach spaces, Eindhoven University of Technology, Pleven, 2001 | MR | Zbl

[3] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[4] Kochubei A. N., “Zadacha Koshi dlya evolyutsionnykh uravnenii drobnogo poryadka”, Differents. uravneniya, 25:8 (1989), 1359–1368 | MR

[5] Sakamoto K., Yamamoto M., “Inverse source problem with a final overdetermination for a fractional diffusion equation”, Mathem. Control and Related Fields, 1:4 (2011), 509–518 | DOI | MR | Zbl

[6] Glushak A. V., “Ob odnoi obratnoi zadache dlya abstraktnogo differentsialnogo uravneniya drobnogo poryadka”, Matem. zametki, 87:5 (2010), 684–693 | DOI | MR | Zbl

[7] Kokurin M. M., “O edinstvennosti resheniya obratnoi zadachi Koshi dlya differentsialnogo uravneniya s drobnoi proizvodnoi v banakhovom prostranstve”, Materialy Desyatoi molodezhnoi nauchn. shkoly-konf. “Lobachevskie chteniya-2011”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 44, Kazan. matem. o-vo, Kazan, 2011, 173–175

[8] Popov A. Yu., Sedletskii A. M., “Raspredelenie kornei funktsii Mittag-Lefflera”, Sovremennaya matematika. Fundament. napravleniya, 40, 2011, 3–171 | MR

[9] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | Zbl

[10] Evgrafov M. A., Analiticheskie funktsii, Nauka, M., 1991 | MR

[11] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[12] Haase M., The functional calculus for sectorial operators, Birkhäuser, Basel, 2006 | MR | Zbl

[13] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, In. lit., M., 1962 | MR

[14] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Fizmatlit, M., 1965 | MR

[15] Bakushinskii A. B., Kokurin M. Yu., Klyuchev V. V., “Ob otsenke skorosti skhodimosti i pogreshnosti raznostnykh metodov resheniya nekorrektnoi zadachi Koshi v banakhovom prostranstve”, Vychisl. metody i programmirov., 7 (2006), 163–171

[16] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Physics Reports, 339 (2000), 1–77 | DOI | MR | Zbl

[17] Uchaikin V. V., “O drobno-differentsialnykh modelyakh uskoreniya kosmicheskikh luchei v Galaktike”, Pisma v ZhETF, 92:4 (2010), 226–232